import os import sys import logging import pandas as pd from datetime import datetime as dt from netCDF4 import Dataset import numpy as np import platform from aosstower import station, schema from aosstower.level_00 import parser from datetime import timedelta as delta from aosstower.level_b1 import calc LOG = logging.getLogger(__name__) STATION_NAME = "AOSS Tower" SOFTWARE_VERSION = '00' # Knots used to do ASOS wind gust calculations KNOTS_10 = calc.knots_to_mps(10.) KNOTS_9 = calc.knots_to_mps(9.) KNOTS_5 = calc.knots_to_mps(5.) KNOTS_3 = calc.knots_to_mps(3.) KNOTS_2 = calc.knots_to_mps(2.) DEFAULT_FLOAT_FILL = -9999. def make_summary_dict(source_dict): """Create the '_mean','_min','_max' file structure.""" dest_dict = {} for key in source_dict: if key == 'wind_dir': dest_dict['wind_speed_max_dir'] = source_dict[key] dest_dict['wind_speed_mean_dir'] = source_dict[key] dest_dict['wind_speed_min_dir'] = source_dict[key] dest_dict['peak_gust_dir'] = source_dict[key] elif key == 'gust': dest_dict['peak_gust'] = source_dict[key] else: dest_dict[key + '_max'] = source_dict[key] dest_dict[key + '_mean'] = source_dict[key] dest_dict[key + '_min'] = source_dict[key] return dest_dict def filter_array(arr, valid_min, valid_max, valid_delta): """Create QC field array. Meanings -------- Bit 0 (0b1): value is equal to missing_value Bit 1 (0b10): value is less than the valid min Bit 2 (0b100): value is greater than the valid max Bit 3 (0b1000): difference between current and previous values exceeds valid_delta Arguments: arr (Series): Data array this QC is for valid_min (float): Valid minimum of the input data valid_max (float): Valid maximum of the input data valid_delta (float): Valid delta of one input data point to the previous point Returns: Series: Bit-mask describing the input data (see above bit meanings) """ qcControl = np.zeros(arr.shape, dtype=np.int8) qcControl[arr.isnull().values] |= 0b1 if valid_min: qcControl[(arr < valid_min).values] |= 0b10 if valid_max: qcControl[(arr > valid_max).values] |= 0b100 if valid_delta: # prepend to fix off-by-one array shape d = np.append([0], np.diff(arr)) qcControl[(d > valid_delta).values] |= 0b1000 return qcControl def write_dimensions(nc_file): nc_file.createDimension('time', None) nc_file.createDimension('max_len_station_name', 32) def create_variables(nc_file, first_stamp, database, chunk_sizes=None, zlib=False): # base_time long name btln = 'Base time in Epoch' # base time units btu = 'seconds since 1970-01-01 00:00:00' # base time string bts = first_stamp.strftime('%Y-%m-%d 00:00:00Z') # time offset long name to_ln = 'Time offset from base_time' # time offset units to_u = 'seconds since ' + first_stamp.strftime('%Y-%m-%d 00:00:00Z') # 'time' units t_u = 'hours since ' + first_stamp.strftime('%Y-%m-%d 00:00:00Z') coordinates = { # fields: type, dimension, fill, valid_min, std_name, longname, units, valid_max, cf_role, axis 'time': [np.float64, ('time',), DEFAULT_FLOAT_FILL, None, None, "Hour offset from midnight", t_u, None, None, None], 'lon': [np.float32, tuple(), DEFAULT_FLOAT_FILL, -180., 'longitude', None, 'degrees_east', 180., None], 'lat': [np.float32, tuple(), DEFAULT_FLOAT_FILL, -90., 'latitude', None, 'degrees_north', 90., None], 'alt': [np.float32, tuple(), DEFAULT_FLOAT_FILL, None, 'height', 'vertical distance', 'm', None, None], # int64 for base_time would be best, but NetCDF4 Classic does not support it # NetCDF4 Classic mode was chosen so users can use MFDatasets (multi-file datasets) 'base_time': [np.int32, tuple(), DEFAULT_FLOAT_FILL, None, 'time', btln, btu, None, None], 'time_offset': [np.float64, ('time',), DEFAULT_FLOAT_FILL, None, 'time', to_ln, to_u, None, None], 'station_name': ['c', ('max_len_station_name',), '\0', None, None, 'station name', None, None, 'timeseries_id'], } for key, attr in coordinates.items(): if attr[1] == ('max_len_station_name',) and chunk_sizes and chunk_sizes[0] > 32: cs = [32] else: cs = chunk_sizes variable = nc_file.createVariable(key, attr[0], dimensions=attr[1], fill_value=attr[2], zlib=zlib, chunksizes=cs) # create var attributes if key == 'alt': variable.positive = 'up' variable.axis = 'Z' if attr[3]: variable.valid_min = attr[3] variable.valid_max = attr[7] if attr[4]: variable.standard_name = attr[4] if attr[5]: variable.long_name = attr[5] if attr[6]: variable.units = attr[6] if attr[8]: variable.cf_role = attr[8] if key == 'base_time': variable.string = bts variable.ancillary_variables = 'time_offset' elif key == 'time_offset': variable.ancillary_variables = 'base_time' # CF default # if 'time' in key: # variable.calendar = 'gregorian' for entry in sorted(database.keys()): if entry == 'stamp': continue varTup = database[entry] variable = nc_file.createVariable(entry, np.float32, dimensions=('time',), fill_value=DEFAULT_FLOAT_FILL, zlib=zlib, chunksizes=chunk_sizes) variable.standard_name = varTup[1] variable.description = varTup[3] variable.units = varTup[4] if varTup[5] != '': variable.valid_min = float(varTup[5]) variable.valid_max = float(varTup[6]) qcVariable = nc_file.createVariable('qc_' + entry, 'b', dimensions=('time',), zlib=zlib, chunksizes=chunk_sizes) qcVariable.long_name = 'data quality' qcVariable.valid_range = np.byte(0b1), np.byte(0b1111) qcVariable.flag_masks = np.byte(0b1), np.byte(0b10), np.byte(0b100), np.byte(0b1000) flagMeaning = ['value is equal to missing_value', 'value is less than the valid min', 'value is greater than the valid max', 'difference between current and previous values exceeds valid_delta.'] qcVariable.flag_meaning = ', '.join(flagMeaning) def calculate_wind_gust(wind_speed_5s, wind_speed_2m): """Calculate reportable wind gust from wind speed averages. Determination of wind gusts follows the Autmated Surface Observing System (ASOS) User's Guide created by NOAA. The guide can be found here: http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf Note: This operates on wind data in meters per second even though the ASOS User's Guide operates on knots. Arguments: wind_speed_5s (Series): 5-second average of instantaneous wind speed magnitudes in m/s wind_speed_2m (Series): 2-minute rolling average of the 5 second wind speed averages in m/s Returns: Series: 5-second rolling wind speed gusts meeting the ASOS criteria for being a reportable wind gust. """ # 1 minute rolling peaks wind_peak_1m = wind_speed_5s.rolling(window='1T', center=False).max() # criteria for a fast wind to be considered a wind gust gust_mask = (wind_speed_2m >= KNOTS_9) & \ (wind_peak_1m >= wind_speed_2m + KNOTS_5) gusts = wind_peak_1m.mask(~gust_mask) # determine highest gust in the last 10 minutes # 5 seconds * 120 = 10 minutes max_10m_gusts = gusts.rolling(window='10T', center=False).max() # Minimum 5-second average in the past 10 minutes min_10m_5avg = wind_speed_5s.rolling(window='10T', center=False).min() # criteria for a wind gust to be reportable reportable_mask = (max_10m_gusts >= wind_speed_2m + KNOTS_3) & \ (wind_speed_2m > KNOTS_2) & \ (max_10m_gusts >= min_10m_5avg + KNOTS_10) # Reportable gusts at 5 second resolution reportable_gusts = max_10m_gusts.mask(~reportable_mask) return reportable_gusts def minute_averages(frame): """Average the data frame at a 1 minute interval. Wind direction and wind speed must be handled in a special manner """ # Add wind direction components so we can average wind direction properly frame['wind_east'], frame['wind_north'], _ = calc.wind_vector_components(frame['wind_speed'], frame['wind_dir']) # round up each 1 minute group so data at time T is the average of data # from T - 1 (exclusive) to T (inclusive). new_frame = frame.resample('1T', closed='right', loffset='1T').mean() # 2 minute rolling average of 5 second data (5 seconds * 24 = 120 seconds = 2 minutes) winds_frame_5s = frame[['wind_speed', 'wind_east', 'wind_north']] winds_frame_5s = winds_frame_5s.resample('5S', closed='right', loffset='5S').mean() winds_frame_2m = winds_frame_5s.rolling(24, win_type='boxcar').mean() # rolling average is used for 1 minute output new_frame.update(winds_frame_2m.ix[new_frame.index]) # adds wind_speed, wind_east/north new_frame['wind_dir'] = calc.wind_vector_degrees(new_frame['wind_east'], new_frame['wind_north']) del new_frame['wind_east'] del new_frame['wind_north'] gust = calculate_wind_gust(winds_frame_5s['wind_speed'], winds_frame_2m['wind_speed']) # "average" the gusts to minute resolution to match the rest of the data new_frame['gust'] = gust.resample('1T', closed='right', loffset='1T').max() return new_frame.fillna(np.nan) def summary_over_interval(frame, interval_width): """takes a frame and an interval to average it over, and returns a minimum, maximum, and average dataframe for that interval """ # round each timestamp to the nearest minute # the value at time X is for the data X - interval_width minutes exclude = ['gust', 'wind_east', 'wind_north'] include = [c for c in frame.columns if c not in exclude] gb = frame[include].resample(interval_width, closed='left') low = gb.min() low.rename(columns=lambda x: x + "_min", inplace=True) high = gb.max() high.rename(columns=lambda x: x + "_max", inplace=True) mean = gb.mean() mean.rename(columns=lambda x: x + "_mean", inplace=True) out_frames = pd.concat((low, high, mean), axis=1) # wind fields need to be handled specially ws_min_idx = frame['wind_speed'].resample(interval_width, closed='left').apply(lambda arr_like: arr_like.argmin()) ws_max_idx = frame['wind_speed'].resample(interval_width, closed='left').apply(lambda arr_like: arr_like.argmax()) # probably redundant but need to make sure the direction indexes are # the same as those used in the wind speed values # must use .values so we don't take data at out_frames index, but rather # fill in the out_frames index values with the min/max values out_frames['wind_speed_min'] = frame['wind_speed'][ws_min_idx].values out_frames['wind_speed_max'] = frame['wind_speed'][ws_max_idx].values out_frames['wind_speed_min_dir'] = calc.wind_vector_degrees(frame['wind_east'][ws_min_idx], frame['wind_north'][ws_min_idx]).values out_frames['wind_speed_max_dir'] = calc.wind_vector_degrees(frame['wind_east'][ws_max_idx], frame['wind_north'][ws_max_idx]).values we = frame['wind_east'].resample(interval_width, closed='left').mean() wn = frame['wind_north'].resample(interval_width, closed='left').mean() out_frames['wind_speed_mean_dir'] = calc.wind_vector_degrees(we, wn).values gust_idx = frame['gust'].resample(interval_width, closed='left').apply(lambda arr_like: arr_like.argmax()) # gusts may be NaN so this argmax will be NaN indexes which don't work great gust_idx = gust_idx.astype('datetime64[ns]', copy=False) peak_gust = frame['gust'][gust_idx] out_frames['peak_gust'] = peak_gust.values we = frame['wind_east'][gust_idx] wn = frame['wind_north'][gust_idx] out_frames['peak_gust_dir'] = calc.wind_vector_degrees(we, wn).values return out_frames def _get_data(input_files): for filename in input_files: yield from parser.read_frames(filename) def get_data(input_files): frame = pd.DataFrame(_get_data(input_files)) frame.set_index('stamp', inplace=True) frame.mask(frame == -99999., inplace=True) frame.fillna(value=np.nan, inplace=True) return frame def write_vars(nc_file, frame, database): # all time points from epoch time_epoch = (frame.index.astype(np.int64) // 10**9).values # midnight of data's first day base_epoch = frame.index[0].replace(hour=0, minute=0, second=0, microsecond=0).value // 10**9 fileVar = nc_file.variables # base_time is midnight of the current day fileVar['base_time'].assignValue(base_epoch) fileVar['time_offset'][:] = time_epoch - base_epoch # hours since midnight fileVar['time'][:] = (time_epoch - base_epoch) / (60 * 60) # write coordinate var values to file # alt might not be right, need to verify fileVar['lon'].assignValue(station.LONGITUDE) fileVar['lat'].assignValue(station.LATITUDE) fileVar['alt'].assignValue(station.ELEVATION) # write station name to file fileVar['station_name'][:len(STATION_NAME)] = STATION_NAME # writes data into file for varName in frame: if varName not in fileVar: LOG.debug('Unused input variable: %s', varName) continue fileVar[varName][:] = frame[varName].fillna(DEFAULT_FLOAT_FILL).values valid_min = database[varName][5] valid_max = database[varName][6] valid_delta = database[varName][7] fileVar['qc_' + varName][:] = filter_array(frame[varName], float(valid_min) if valid_min else valid_min, float(valid_max) if valid_max else valid_max, float(valid_delta) if valid_delta else valid_delta) coordinates = ['lon', 'lat', 'alt', 'base_time', 'time_offset', 'station_name', 'time'] for varName in fileVar: if not varName.startswith('qc_') and \ varName not in frame and \ varName not in coordinates: # if a variable should be in file (database), but isn't in the # input data then make sure the QC field lists it as all fills fileVar['qc_' + varName][:] |= 0b1 def write_global_attributes(nc_file, input_sources, interval=None, datastream=None): # create global attributes nc_file.source = 'surface observation' nc_file.conventions = 'ARM-1.2 CF-1.6' nc_file.institution = 'University of Wisconsin - Madison (UW) Space Science and Engineering Center (SSEC)' nc_file.featureType = 'timeSeries' nc_file.data_level = 'b1' # monthly files end with .month.nc # these end with .day.nc if datastream: nc_file.datastream = datastream elif interval in ['1D']: # assume this is a monthly file, averaged daily nc_file.datastream = 'aoss.tower.nc-1mo-1d.b1.v{software_version}'.format(software_version=SOFTWARE_VERSION) elif interval in ['1T', '1min']: # assume this is a daily file, averaged nc_file.datastream = 'aoss.tower.nc-1d-1m.b1.v{software_version}'.format(software_version=SOFTWARE_VERSION) nc_file.software_version = SOFTWARE_VERSION nc_file.command_line = " ".join(sys.argv) # generate history nc_file.history = ' '.join(platform.uname()) + " " + os.path.basename(__file__) nc_file.input_source = input_sources[0] nc_file.input_sources = ', '.join(input_sources) def create_giant_netcdf(input_files, output_fn, zlib, chunk_size, start=None, end=None, interval_width=None, summary=False, database=schema.database, datastream=None): frame = get_data(input_files) if frame.empty: raise ValueError("No data found from input files: {}".format(", ".join(input_files))) # Add wind direction components so we can average wind direction properly frame['wind_east'], frame['wind_north'], _ = calc.wind_vector_components(frame['wind_speed'], frame['wind_dir']) if 'air_temp' in frame and 'rh' in frame and 'dewpoint' in database: LOG.info("'dewpoint' is missing from the input file, will calculate it from air temp and relative humidity") frame['dewpoint'] = calc.dewpoint(frame['air_temp'], frame['rh']) # round up each 1 minute group so data at time T is the average of data # from T - 1 (exclusive) to T (inclusive). new_frame = frame.resample('5S', closed='right', loffset='5S').mean() # 2 minute rolling average of 5 second data (5 seconds * 24 = 120 seconds = 2 minutes) winds_frame_5s = new_frame[['wind_speed', 'wind_east', 'wind_north']] winds_frame_2m = winds_frame_5s.rolling('2T').mean() winds_frame_2m['gust'] = calculate_wind_gust(winds_frame_5s['wind_speed'], winds_frame_2m['wind_speed']) # rolling average is used for mean output new_frame.update(winds_frame_2m) # adds wind_speed, wind_east/north new_frame['gust'] = winds_frame_2m['gust'] # average the values if summary: frame = summary_over_interval(new_frame, interval_width) else: frame = new_frame.resample(interval_width, closed='right', loffset=interval_width).mean() frame['wind_dir'] = calc.wind_vector_degrees(frame['wind_east'], frame['wind_north']) frame['gust'] = new_frame['gust'].resample(interval_width, closed='right', loffset=interval_width).max() frame.fillna(np.nan, inplace=True) if start and end: frame = frame[start.strftime('%Y-%m-%d %H:%M:%S'): end.strftime('%Y-%m-%d %H:%M:%S')] if chunk_size and not isinstance(chunk_size, (list, tuple)): chunk_sizes = [chunk_size] else: chunk_sizes = [frame.shape[0]] first_stamp = dt.strptime(str(frame.index[0]), '%Y-%m-%d %H:%M:%S') # NETCDF4_CLASSIC was chosen so that MFDataset reading would work. See: # http://unidata.github.io/netcdf4-python/#netCDF4.MFDataset nc_file = Dataset(output_fn, 'w', format='NETCDF4_CLASSIC') write_dimensions(nc_file) create_variables(nc_file, first_stamp, database, chunk_sizes, zlib) write_vars(nc_file, frame, database) write_global_attributes(nc_file, [os.path.basename(x) for x in input_files], interval=interval_width, datastream=datastream) nc_file.close() return nc_file def _dt_convert(datetime_str): """Parse datetime string, return datetime object""" try: return dt.strptime(datetime_str, '%Y-%m-%dT%H:%M:%S') except ValueError: return dt.strptime(datetime_str, '%Y-%m-%d') def main(): import argparse parser = argparse.ArgumentParser(description="Convert level_00 aoss tower data to level_b1", fromfile_prefix_chars='@') parser.add_argument('-v', '--verbose', action="count", default=int(os.environ.get("VERBOSITY", 2)), dest='verbosity', help='each occurrence increases verbosity 1 level through ERROR-WARNING-INFO-DEBUG (default INFO)') parser.add_argument('-s', '--start-time', type=_dt_convert, help="Start time of massive netcdf file, if only -s is given, a netcdf file for only that day is given" + ". Formats allowed: \'YYYY-MM-DDTHH:MM:SS\', \'YYYY-MM-DD\'") parser.add_argument('-e', '--end-time', type=_dt_convert, help='End time of massive netcdf file. Formats allowed:' + "\'YYYY-MM-DDTHH:MM:SS\', \'YYYY-MM-DD\'") parser.add_argument('-n', '--interval', default='1T', help="""Width of the interval to average input data over in Pandas offset format. If not specified, 1 minute averages are used. If specified then '_high', '_mean', and '_low' versions of the data fields are written to the output NetCDF. Use '1D' for daily or '5T' for 5 minute averages. See this page for more details: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases""") parser.add_argument('--summary', action='store_true', help="Create a file with _low, _mean, _high versions of every variable name") parser.add_argument('-f', '--fields', nargs='+', default=schema.met_vars, help="Variable names to include in the NetCDF file (base name, no suffixes)") parser.add_argument('--chunk-size', type=int, help='chunk size for the netCDF file') parser.add_argument('-z', '--zlib', action='store_true', help='compress netCDF file with zlib') parser.add_argument('--data-stream', help="'datastream' global attribute to put in output file") parser.add_argument('-i', '--input', dest='input_files', required=True, nargs="+", help="aoss_tower level_00 paths. Use @filename to red a list of paths from that file.") parser.add_argument('-o', '--output', dest='output_files', required=True, nargs="+", help="""NetCDF filename(s) to create from input. If one filename is specified then all input files are combined in to it. Otherwise each input file is mapped to the corresponding output file. """) args = parser.parse_args() levels = [logging.ERROR, logging.WARN, logging.INFO, logging.DEBUG] level = levels[min(3, args.verbosity)] logging.basicConfig(level=level) if args.start_time and not args.end_time: args.end_time = args.start_time.replace(hour=23, minute=59, second=59) elif not args.start_time and args.end_time: raise ValueError('start time must be specified when end time is specified') mini_database = {k: schema.database[k] for k in args.fields} if args.summary: mini_database = make_summary_dict(mini_database) # Case 1: All inputs to 1 output file # Case 2: Each input in to a separate output file if args.output_files and len(args.output_files) not in [1, len(args.input_files)]: raise ValueError('Output filenames must be 1 or the same length as input files') elif args.output_files and len(args.output_files) == len(args.input_files): args.input_files = [[i] for i in args.input_files] else: args.input_files = [args.input_files] success = False for in_files, out_fn in zip(args.input_files, args.output_files): try: create_giant_netcdf(in_files, out_fn, args.zlib, args.chunk_size, args.start_time, args.end_time, args.interval, args.summary, mini_database, args.data_stream) success = True except (ValueError, TypeError): LOG.error("Could not generate NetCDF file for {}".format(in_files), exc_info=True) if not success: raise IOError('All ASCII files were empty or could not be read') if __name__ == "__main__": sys.exit(main())