#!/usr/bin/env python # encoding: utf-8 """ This module manages creating figures for the Glance GUI. Created by evas Nov 2011. Copyright (c) 2011 University of Wisconsin SSEC. All rights reserved. """ # these first two lines must stay before the pylab import import matplotlib # Note: it's assumed that you've already set up this use previously #matplotlib.use('Qt4Agg') # use the Qt Anti-Grain Geometry rendering engine from pylab import * import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib.colors as colors import logging import numpy as np import glance.data as dataobjects import glance.figures as figures import glance.gui_model as model from glance.gui_constants import * LOG = logging.getLogger(__name__) # colormaps that are available in the GUI # TODO, if this changes the list of colormap names in the constants module needs to be kept up AVAILABLE_COLORMAPS = {CM_RAINBOW: cm.jet, CM_GRAY: cm.bone} class GlanceGUIFigures (object) : """ This class handles creating figures for the glance gui. (in future it may manage them more actively) it includes: self.dataModel - the GlanceGUIModel object that contains the main data model for the GUI self.errorHandlers - objects that want to be notified when there's a serious error """ def __init__ (self, dataModelToSave) : """ create a figure manager, hanging on to the data model, for use in creating figures """ self.dataModel = dataModelToSave self.errorHandlers = [ ] def registerErrorHandler (self, objectToRegister) : """ add the given object to our list of error handlers """ if objectToRegister not in self.errorHandlers : self.errorHandlers.append(objectToRegister) def _getVariableInformation (self, filePrefix, variableName=None) : """ Pull the name, data, and units for the variable currently selected in the given file prefix """ varNameToUse = variableName if varNameToUse is None : varNameToUse = self.dataModel.getVariableName(filePrefix) # get the currently selected variable dataObject = self.dataModel.getVariableData(filePrefix, varNameToUse, doCorrections=True) unitsText = self.dataModel.getUnitsText (filePrefix, varNameToUse) if dataObject is not None : dataObject.self_analysis() return varNameToUse, dataObject, unitsText def _getVariableInfoSmart (self, filePrefix, imageType) : """ if appropriate for the image type, get information on the variable, otherwise return None's """ varName, dataObject, unitsText = None, None, None # only load the data if it will be needed for the plot if ( self.dataModel.getShouldShowOriginalPlotsInSameRange() or ((imageType == ORIGINAL_A) and (filePrefix == "A") or (imageType == ORIGINAL_B) and (filePrefix == "B") or (imageType in COMPARISON_IMAGES))) : varName, dataObject, unitsText = self._getVariableInformation(filePrefix) return varName, dataObject, unitsText def _buildDiffInfoObjectSmart (self, imageType, dataObjectA, dataObjectB, varNameA, varNameB, epsilon_value=None, epsilon_percent=None) : """ if appropriate for the image type, build the difference object, otherwise return None this method may rase an IncompatableDataObjects exception if the two data objects it's given can't be compared """ diffObject = None # only build the difference if we need to compare the data if imageType in COMPARISON_IMAGES : # check to see if our data is minimally compatable; this call may raise an IncompatableDataObjects exception dataobjects.DiffInfoObject.verifyDataCompatability (dataObjectA, dataObjectB, varNameA, varNameB) # compare our data diffObject = dataobjects.DiffInfoObject(dataObjectA, dataObjectB, epsilonValue=epsilon_value, epsilonPercent=epsilon_percent) return diffObject def _load_and_analyse_lonlat (self, listOfFilePrefixes=["A", "B"], lonNames=None, latNames=None, stopIfComparisonFails=False) : """ load information on the longidue and latitude, if there are multiple file prefixes given: find the shared range analyse how different the navigation is between the files (if there is a lon/lat epsilon defined and the difference is more than that, either stop with an error or log a warning) lonNames and latNames should be dictionaries giving the names of the longitude and latitude variables indexed by the file prefixes This method may raise an IncompatableDataObjects exception if multiple file prefixes are passed in the listOfFilePrefixes and the longitude and latidues for those files can not be compared. """ lonlatData = { } lonRange = None latRange = None # load and compare stuff for each file prefix for filePrefix in listOfFilePrefixes : # get information on the lon/lat from the current file currentLonObj, currentLatObj, currentLonRange, currentLatRange = self._load_lonlat(filePrefix, lonNames[filePrefix], latNames[filePrefix]) # TODO, this will currently crash if there's a problem, we don't really want that assert currentLonObj.data.shape == currentLatObj.data.shape # expand our lon/lat ranges if we need to if lonRange is None : lonRange = currentLonRange else : lonRange[0] = min(currentLonRange[0], lonRange[0]) lonRange[1] = max(currentLonRange[1], lonRange[1]) if latRange is None: latRange = currentLatRange else : latRange[0] = min(currentLatRange[0], latRange[0]) latRange[1] = max(currentLatRange[1], latRange[1]) # compare this file to whatever other data we have for filePrefixToCompare in lonlatData.keys() : lonToCompare, latToCompare = lonlatData[filePrefixToCompare] # TODO, this is going to crash if there's a problem, we don't really want that assert lonToCompare.data.shape == currentLatObj.data.shape assert lonToCompare.data.shape == currentLonObj.data.shape # add this data to the list of lonlat data lonlatData[filePrefix] = [currentLonObj, currentLatObj] # return longitude and latitude information and the shared ranges return lonlatData, lonRange, latRange def _load_lonlat (self, filePrefix, lonName, latName) : """ load the longitude and latitude information for the file and determine the ranges present in both """ _, lonObject, _ = self._getVariableInformation(filePrefix, lonName) _, latObject, _ = self._getVariableInformation(filePrefix, latName) lonRange = [lonObject.get_min(), lonObject.get_max()] latRange = [latObject.get_min(), latObject.get_max()] return lonObject, latObject, lonRange, latRange def spawnPlot (self) : """ create a matplotlib plot using the current model information this method may raise an IncompatableDataObjects exception if the a and b data are completely incomparable this method may also raise a ValueError if the data could not be plotted for reasons not encompassed by an IncompatableDataObjects exception """ # retrieve some plotting settings imageType = self.dataModel.getImageType() dataForm = self.dataModel.getDataForm() colorMapToUse = AVAILABLE_COLORMAPS[self.dataModel.getColormapName()] LOG.info ("Preparing variable data for plotting...") # load the variable data aVarName, aDataObject, aUnitsText = self._getVariableInfoSmart("A", imageType) bVarName, bDataObject, bUnitsText = self._getVariableInfoSmart("B", imageType) # compare the variables diffData = self._buildDiffInfoObjectSmart(imageType, aDataObject, bDataObject, aVarName, bVarName, epsilon_value=self.dataModel.getEpsilon(), epsilon_percent=self.dataModel.getEpsilonPercent()) # if we need to build a shared range, do that now rangeInfo = None if (self.dataModel.getShouldShowOriginalPlotsInSameRange() and (aDataObject is not None) and (bDataObject is not None)) : rangeInfo = [min(aDataObject.get_min(), bDataObject.get_min()), max(aDataObject.get_max(), bDataObject.get_max())] if (dataForm == MAPPED_2D) and (imageType != HISTOGRAM) and (imageType != model.SCATTER) and (imageType != model.HEX_PLOT) : lonNames = { "A": self.dataModel.getLongitudeName("A"), "B": self.dataModel.getLongitudeName("B") } latNames = { "A": self.dataModel.getLatitudeName("A"), "B": self.dataModel.getLatitudeName("B") } lonlatData, lonRange, latRange = self._load_and_analyse_lonlat(listOfFilePrefixes=["A", "B"], lonNames=lonNames, latNames=latNames) # double check that lon/lat are compatable with the data if aDataObject is not None : assert(lonlatData["A"][0].shape == aDataObject.shape) if bDataObject is not None : assert(lonlatData["B"][0].shape == bDataObject.shape) # make composite valid mask allValidMask = ( lonlatData["A"][0].masks.valid_mask & lonlatData["A"][1].masks.valid_mask & lonlatData["B"][0].masks.valid_mask & lonlatData["B"][1].masks.valid_mask ) # build basemap, FUTURE, don't hard code so much of this stuff basemapObject = Basemap(llcrnrlon=lonRange[0], llcrnrlat=latRange[0], urcrnrlon=lonRange[1], urcrnrlat=latRange[1], resolution='i', area_thresh=10000, projection="merc") # TODO get all these variables outside the if statement LOG.info("Spawning plot window: " + imageType) plt.ion() # make sure interactive plotting is on # create whichever type of plot was asked for if imageType == ORIGINAL_A : # if the data doesn't exist, we can't make this plot if aDataObject is None : raise ValueError(NO_DATA_MESSAGE) if dataForm == SIMPLE_2D : tempFigure = figures.create_simple_figure(aDataObject.data, aVarName + "\nin File A", invalidMask=~aDataObject.masks.valid_mask, colorMap=colorMapToUse, colorbarLimits=rangeInfo, units=aUnitsText) elif dataForm == MAPPED_2D : #_, tempLatObj, _ = self._getVariableInformation("A", variableName=self.dataModel.getLatitudeName ("A")) #_, tempLonObj, _ = self._getVariableInformation("A", variableName=self.dataModel.getLongitudeName("A")) # TODO *** #tempFigure = figures.create_mapped_figure(aDataObject.data, tempLatObj.data, tempLonObj.data, baseMapInstance, boundingAxes, title, # invalidMask=None, colorMap=None, tagData=None, # dataRanges=None, dataRangeNames=None, dataRangeColors=None, units=None, **kwargs) pass elif dataForm == ONLY_1D : temp = [(aDataObject.data, ~aDataObject.masks.valid_mask, 'b', None, None, None)] tempFigure = figures.create_line_plot_figure(temp, aVarName + "\n in File A") else : raise ValueError(UNKNOWN_DATA_FORM) elif imageType == ORIGINAL_B : # if the data doesn't exist, we can't make this plot if bDataObject is None : raise ValueError(NO_DATA_MESSAGE) if dataForm == SIMPLE_2D : tempFigure = figures.create_simple_figure(bDataObject.data, bVarName + "\nin File B", invalidMask=~bDataObject.masks.valid_mask, colorMap=colorMapToUse, colorbarLimits=rangeInfo, units=bUnitsText) elif dataForm == MAPPED_2D : pass # TODO elif dataForm == ONLY_1D : temp = [(bDataObject.data, ~bDataObject.masks.valid_mask, 'c', None, None, None)] tempFigure = figures.create_line_plot_figure(temp, bVarName + "\n in File B") else : raise ValueError(UNKNOWN_DATA_FORM) elif imageType in COMPARISON_IMAGES : # if we're making the absolute or raw difference image, do that if (imageType == ABS_DIFF) or (imageType == RAW_DIFF) : # now choose between the raw and abs diff dataToUse = diffData.diff_data_object.data titlePrefix = "Value of (Data File B - Data File A)\nfor " if imageType == ABS_DIFF : dataToUse = np.abs(dataToUse) titlePrefix = "Absolute value of difference\nin " if dataForm == SIMPLE_2D : tempFigure = figures.create_simple_figure(dataToUse, titlePrefix + aVarName, invalidMask=~diffData.diff_data_object.masks.valid_mask, colorMap=colorMapToUse, units=aUnitsText) elif dataForm == MAPPED_2D : pass # TODO elif dataForm == ONLY_1D : tempTitle = titlePrefix + aVarName if aVarName != bVarName : tempTitle = tempTitle + " / " + bVarName temp = [(dataToUse, ~diffData.diff_data_object.masks.valid_mask, 'm', None, None, None)] tempFigure = figures.create_line_plot_figure(temp, tempTitle) else : raise ValueError(UNKNOWN_DATA_FORM) elif imageType == MISMATCH : mismatchMask = diffData.diff_data_object.masks.mismatch_mask if dataForm == SIMPLE_2D : tempFigure = figures.create_simple_figure(aDataObject.data, "Areas of mismatch data\nin " + aVarName, invalidMask=~aDataObject.masks.valid_mask, tagData=mismatchMask, colorMap=figures.MEDIUM_GRAY_COLOR_MAP, units=aUnitsText) # TODO, change colormap? elif dataForm == MAPPED_2D : pass # TODO elif dataForm == ONLY_1D : temp = [(aDataObject.data, ~aDataObject.masks.valid_mask, 'k', None, mismatchMask, None)] tempFigure = figures.create_line_plot_figure(temp, "Areas of mismatch data\nin " + aVarName) else : raise ValueError(UNKNOWN_DATA_FORM) elif imageType == HISTOGRAM : # Note: histograms don't care about data format requested, they are histogram formatted rawDiffDataClean = diffData.diff_data_object.data[diffData.diff_data_object.masks.valid_mask] # TODO, should the range option be added here? tempFigure = figures.create_histogram(rawDiffDataClean, DEFAULT_NUM_BINS, "Difference in\n" + aVarName, "Value of (B - A) at each data point", "Number of points with a given difference", units=aUnitsText) elif (imageType == SCATTER) or (imageType == HEX_PLOT) : # Note: scatter and hex plots don't care about data format requested, they're scatter or hex plots tempCleanMask = aDataObject.masks.valid_mask & bDataObject.masks.valid_mask aDataClean = aDataObject.data[tempCleanMask] bDataClean = bDataObject.data[tempCleanMask] if imageType == SCATTER : cleanMismatchMask = diffData.diff_data_object.masks.mismatch_mask[tempCleanMask] figures.create_scatter_plot(aDataClean, bDataClean, "Value in File A vs Value in File B", "File A Value in " + aVarName, "File B Value in " + bVarName, badMask=cleanMismatchMask, epsilon=self.dataModel.getEpsilon(), units_x=aUnitsText, units_y=bUnitsText) else: tempFigure = figures.create_hexbin_plot(aDataClean, bDataClean, "Value in File A vs Value in File B", "File A Value in " + aVarName, "File B Value in " + bVarName, epsilon=self.dataModel.getEpsilon(), units_x=aUnitsText, units_y=bUnitsText) plt.draw()