#!/usr/bin/env python # encoding: utf-8 """ Plotting routines for different types of figures using matplotlib Created by evas Dec 2009. Copyright (c) 2009 University of Wisconsin SSEC. All rights reserved. """ from pylab import * import matplotlib.cm as cmaps import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.ticker import FormatStrFormatter import logging import numpy as np from numpy import ma import glance.graphics as maps import glance.delta as delta import glance.report as report import glance.stats as statistics LOG = logging.getLogger(__name__) # TODO this value is being used to work around a problem with the contourf # and how it handles range boundaries. Find a better solution if at all possible. offsetToRange = 0.0000000000000000001 # how much data are we willing to put into the matplotlib functions? MAX_SCATTER_PLOT_DATA = 1e6 # FUTURE: this limit was determined experimentally on Eva's laptop, may need to revisit this MAX_HEX_PLOT_DATA = 1e7 # FUTURE: this limit was determined experimentally on Eva's laptop, may need to revisit this # make a custom medium grayscale color map for putting our bad data on top of mediumGrayColorMapData = { 'red' : ((0.0, 1.00, 1.00), (0.5, 0.60, 0.60), (1.0, 0.20, 0.20)), 'green' : ((0.0, 1.00, 1.00), (0.5, 0.60, 0.60), (1.0, 0.20, 0.20)), 'blue' : ((0.0, 1.00, 1.00), (0.5, 0.60, 0.60), (1.0, 0.20, 0.20)) } MEDIUM_GRAY_COLOR_MAP = colors.LinearSegmentedColormap('mediumGrayColorMap', mediumGrayColorMapData, 256) # make an all green color map greenColorMapData = { 'red' : ((0.0, 0.00, 0.00), (1.0, 0.00, 0.00)), 'green' : ((0.0, 1.00, 1.00), (1.0, 1.00, 1.00)), 'blue' : ((0.0, 0.00, 0.00), (1.0, 0.00, 0.00)) } greenColorMap = colors.LinearSegmentedColormap('greenColorMap', greenColorMapData, 256) # todo, the use of the offset here is covering a problem with # contourf hiding data exactly at the end of the range and should # be removed if a better solution can be found def make_range(data_a, valid_a_mask, num_intervals, offset_to_range=0.0, data_b=None, valid_b_mask=None) : """ get an array with numbers representing the bounds of a set of ranges that covers all the data present in data_a (these may be used for plotting the data) if an offset is passed, the outtermost range will be expanded by that much if the b data is passed, a total range that encompasses both sets of data will be used """ minVal = delta.min_with_mask(data_a, valid_a_mask) maxVal = delta.max_with_mask(data_a, valid_a_mask) # if we have a second set of data, include it in the min/max calculations if data_b is not None : minVal = min(delta.min_with_mask(data_b, valid_b_mask), minVal) maxVal = max(delta.max_with_mask(data_b, valid_b_mask), maxVal) minVal -= offset_to_range maxVal += offset_to_range return np.linspace(minVal, maxVal, num_intervals) def _plot_tag_data_simple(tagData, axes_obj) : """ This method will plot tag data listed as true in the tagData mask on the current figure. It is assumed that the correlation between the mask and the pixel coordinates is exact (ie. no translation is needed). The return will be the number of points plotted or -1 if no valid tagData was given. """ numMismatchPoints = -1 # if there are "tag" masks, plot them over the existing map if not (tagData is None) : numMismatchPoints = sum(tagData) # if we have mismatch points, we need to show them if numMismatchPoints > 0: # figure out how many bad points there are totalNumPoints = tagData.size # the number of points percentBad = (float(numMismatchPoints) / float(totalNumPoints)) * 100.0 LOG.debug('\t\tnumber of mismatch points: ' + str(numMismatchPoints)) LOG.debug('\t\tpercent of mismatch points: ' + str(percentBad)) # get the current limits of the plot tempXLim = axes_obj.get_xlim() tempYLim = axes_obj.get_ylim() # if there aren't a lot of points, plot them individually if (numMismatchPoints < 50000) | ((numMismatchPoints < 200000) & (percentBad < 2.0)) : markerSize = 1 if numMismatchPoints > 10000 else 2 (height, width) = tagData.shape tempX = [ ] tempY = [ ] for h in range(height) : for w in range(width) : if tagData[h, w] : tempX.append(w) tempY.append(h) # if we have only a few points, make them more obvious with purple circles if numMismatchPoints < 500 : _ = plot(tempX, tempY, 'o', color='#993399', markersize=5) # plot the green mismatch points _ = plot(tempX, tempY, '.', markersize=markerSize, color='#00ff00') # if there are a lot of points, plot them as an overall mask else : new_kwargs = { 'cmap': greenColorMap, } cleanTagData = ma.array(tagData, mask=~tagData) _ = contourf(cleanTagData, **new_kwargs) # make sure we haven't changed the limits of the plot axes_obj.set_xlim(tempXLim) axes_obj.set_ylim(tempYLim) # display the number of mismatch points on the report if we were passed a set of tag data mismatchPtString = '\n\nShowing ' + str(numMismatchPoints) + ' Mismatch Points' # if our plot is more complex, add clarification if numMismatchPoints > 0 : mismatchPtString += ' in Green' plt.xlabel(mismatchPtString) return numMismatchPoints def _plot_tag_data_mapped(plotting_axes, input_c_projection, tagData, x, y, addExplinationLabel=True) : """ This method will plot the tagged data listed as true in the tagData mask on the current figure using the given input projection. A message will also be added below the map describing the number of points plotted, unless the addExplinationLabel variable is passed as False. The return will be the number of points plotted or -1 if no valid tagData was given. Note: if you are using lon/lat, then x=lon and y=lat """ numMismatchPoints = -1 # if there are "tag" masks, plot them over the existing map if (tagData is not None) and (tagData.size > 0) : # look at how many mismatch points we have numMismatchPoints = sum(tagData) neededHighlighting = False if numMismatchPoints > 0 : # pick out the cooridinates of the points we want to plot newX = np.array(x[tagData]) newY = np.array(y[tagData]) # figure out how many bad points there are totalNumPoints = x.size # the number of points percentBad = (float(numMismatchPoints) / float(totalNumPoints)) * 100.0 LOG.debug('\t\tnumber of mismatch points: ' + str(numMismatchPoints)) LOG.debug('\t\tpercent of mismatch points: ' + str(percentBad)) # if there are very few points, make them easier to notice # by plotting some colored circles underneath them if (percentBad < 0.25) or (numMismatchPoints < 20) : neededHighlighting = True maps.plot_on_map(newX, newY, plotting_axes, input_c_projection, marker_const='o', color_const='#993399', marker_size=5,) elif (percentBad < 1.0) or (numMismatchPoints < 200) : neededHighlighting = True maps.plot_on_map(newX, newY, plotting_axes, input_c_projection, marker_const='o', color_const='#993399', marker_size=3, ) # if there are way too many mismatch points, we can't use plot for this # instead use contourf if numMismatchPoints > 1000000 : new_kwargs = { 'cmap': greenColorMap, } cleanTagData = ma.array(tagData, mask=~tagData) maps.contourf_on_map(x, y, cleanTagData, plotting_axes, input_c_projection, levelsToUse=None, **new_kwargs) else : # plot our point on top of the existing figure maps.plot_on_map(newX, newY, plotting_axes, input_c_projection, marker_const='.', color_const='#00FF00', marker_size=1, ) if addExplinationLabel : # display the number of mismatch points on the report if we were passed a set of tag data # I'm not thrilled with this solution for getting it below the labels drawn by the basemap # but I don't think there's a better one at the moment given matplotlib's workings mismatchPtString = '\n\nShowing ' + str(numMismatchPoints) + ' Mismatch Points' # if our plot is more complex, add clarification if numMismatchPoints > 0 : mismatchPtString += ' in Green' if neededHighlighting : mismatchPtString += '\nwith Purple Circles for Visual Clarity' plt.xlabel(mismatchPtString) return numMismatchPoints def check_data_amount_for_scatter_plot (num_data_points,) : """ Is the given amount too much data for a scatter plot? return True if this is an ok amount and False if we won't make a scatter plot with this much data """ return True if num_data_points < MAX_SCATTER_PLOT_DATA else False # build a scatter plot of the x,y points def create_scatter_plot(dataX, dataY, title_str, xLabel, yLabel, badMask=None, epsilon=None, units_x=None, units_y=None) : """ build a scatter plot of the data if a bad mask is given the points selected by that mask will be plotted in a different color if an epsilon is given the lines for +/- epsilon will be drawn on the plot by default this plot uses blue for data points and red for data marked by the bad mask """ to_return = None # make a regular scatter plot if we don't have too much data if dataX.size < MAX_SCATTER_PLOT_DATA : to_return = create_complex_scatter_plot ([(dataX, dataY, badMask, 'b', 'r', 'within\nepsilon', 'outside\nepsilon')], title_str, xLabel, yLabel, epsilon=epsilon, units_x=units_x, units_y=units_y) else : LOG.warn("Too much data present to allow creation of scatter plot for \"" + title_str + "\". Plot will not be created.") return to_return def create_complex_scatter_plot(dataList, title_str, xLabel, yLabel, epsilon=None, units_x=None, units_y=None) : """ build a scatter plot with multiple data sets in different colors the dataList parameter should be in the form: [(set1), (set2), ... , (setN)] where a set looks like: (x data, y data, mask of bad points or None, matlab color code for display, matlab color code for 'bad' points, good label, bad label) if a mask of bad points is given, it will be applied to both the x and y data at least one data set must be given or no image will be created. """ # if we have no data, stop now if (dataList is None) or (len(dataList) <= 0): return None # If there is no data to be plotted or only one point, don't try to plot sumDataSize = 0 for dataX, dataY, badMask, goodColor, badColor, goodLabel, badLabel in dataList: sumDataSize += dataX.size if sumDataSize <= 1: LOG.debug("Not enough data to make a meaningful scatter plot figure.") return None # make the figure figure_obj = plt.figure() axes_obj = figure_obj.add_subplot(111) # look at the stuff in each of the data sets and plot that set for dataX, dataY, badMask, goodColor, badColor, goodLabel, badLabel in dataList : # if we have "bad" data to plot, pull it out badX = None badY = None if badMask is not None : badX = dataX[badMask] badY = dataY[badMask] dataX = dataX[~badMask] dataY = dataY[~badMask] # the scatter plot of the good data axes_obj.plot(dataX, dataY, ',', color=goodColor, label=goodLabel) # plot the bad data if (badX is not None) and (badY is not None) and (badMask is not None) : numMismatchPts = badX.size LOG.debug('\t\tplotting ' + str(numMismatchPts) + ' mismatch points in scatter plot.' ) if numMismatchPts > 0 : axes_obj.plot(badX, badY, ',', color=badColor, label=badLabel) # draw some extra informational lines _draw_x_equals_y_line(axes_obj, epsilon=epsilon) # make a key to explain our plot # as long as things have been plotted with proper labels they should show up here axes_obj.legend(loc=0, markerscale=3.0) # Note: at the moment markerscale doesn't seem to work # add the units to the x and y labels tempXLabel = xLabel tempYLabel = yLabel if (str.lower(str(units_x)) != "none") and (str.lower(str(units_x)) != "1") : tempXLabel = tempXLabel + " in " + units_x if (str.lower(str(units_y)) != "none") and (str.lower(str(units_y)) != "1") : tempYLabel = tempYLabel + " in " + units_y # and some informational stuff axes_obj.set_title(title_str) plt.xlabel(tempXLabel) plt.ylabel(tempYLabel) # format our axes so they display gracefully yFormatter = FormatStrFormatter("%4.4g") axes_obj.yaxis.set_major_formatter(yFormatter) xFormatter = FormatStrFormatter("%4.4g") axes_obj.xaxis.set_major_formatter(xFormatter) return figure_obj def create_density_scatter_plot(dataX, dataY, title_str, xLabel, yLabel, epsilon=None, units_x=None, units_y=None, num_bins=200) : """ build a density scatter plot of the X data vs the Y data """ if (dataX is None) or (dataX.size <= 1) : LOG.debug("Not enough data to make a meaningful density scatter plot figure.") return None # make the figure figure_obj = plt.figure() axes_obj = figure_obj.add_subplot(111) # if we have no data, stop now if (dataX is None) or (dataY is None) or (dataX.size <= 0) or (dataY.size <= 0) : LOG.warn ("Insufficient data present to create density scatter plot.") return figure_obj # if our data sizes don't match, warn and stop if dataX.size != dataY.size : LOG.warn ("The X and Y data given to create scatter plot \"" + "\" were different sizes and could not be compared." ) return figure_obj # figure out the range of the data min_value = min(np.min(dataX), np.min(dataY)) max_value = max(np.max(dataX), np.max(dataY)) # bounds should be defined in the form [[xmin, xmax], [ymin, ymax]] bounds = [[min_value, max_value], [min_value, max_value]] # make our data flat if needed dataX = dataX.ravel if len(dataX.shape) > 1 else dataX dataY = dataY.ravel if len(dataY.shape) > 1 else dataY # make the binned density map for this data set density_map, _, _ = np.histogram2d(dataX, dataY, bins=num_bins, range=bounds) # mask out zero counts; flip because y goes the opposite direction in an imshow graph density_map = np.flipud(np.transpose(np.ma.masked_array(density_map, mask=density_map == 0))) # Ensure there is a real range # (If we don't, matplotlib does the same thing, but # generates useless warnings.) if max_value == min_value: min_value = -0.1 max_value = 0.1 # display the density map data img_temp = imshow(density_map, extent=[min_value, max_value, min_value, max_value], interpolation='nearest', norm=matplotlib.colors.LogNorm()) # draw some extra informational lines _draw_x_equals_y_line(axes_obj, epsilon=epsilon) # show a color bar cb = plt.colorbar(img_temp) cb.set_label('log(count of data points)') # add the units to the x and y labels tempXLabel = xLabel tempYLabel = yLabel if (str.lower(str(units_x)) != "none") and (str.lower(str(units_x)) != "1") : tempXLabel = tempXLabel + " in " + units_x if (str.lower(str(units_y)) != "none") and (str.lower(str(units_y)) != "1") : tempYLabel = tempYLabel + " in " + units_y # and some informational stuff axes_obj.set_title(title_str) plt.xlabel(tempXLabel) plt.ylabel(tempYLabel) # format our axes so they display gracefully yFormatter = FormatStrFormatter("%4.4g") axes_obj.yaxis.set_major_formatter(yFormatter) xFormatter = FormatStrFormatter("%4.4g") axes_obj.xaxis.set_major_formatter(xFormatter) return figure_obj def check_data_amount_for_hex_plot (num_data_points, ): """ Is the given amount too much data for a hex plot? return True if this is an ok amount and False if we won't make a hex plot with this much data """ return True if num_data_points < MAX_HEX_PLOT_DATA else False # build a hexbin plot of the x,y points and show the density of the point distribution def create_hexbin_plot(dataX, dataY, title_str, xLabel, yLabel, epsilon=None, units_x=None, units_y=None) : if (dataX is None) or (dataX.size <= 1) : LOG.debug("Not enough data to make a meaningful hexbin figure.") return None # if we have too much data, stop now if dataX.size > MAX_HEX_PLOT_DATA : LOG.warn("Too much data present to allow creation of hex plot for \"" + title_str + "\". Plot will not be created.") return None # make the figure figure_obj = plt.figure() axes_obj = figure_obj.add_subplot(111) # for some reason, if you give the hexplot a data set that's all the same number it dies horribly if ( ((dataX is None) or (len(dataX) <= 0)) or ((dataY is None) or (len(dataY) <= 0)) or ((dataX.max() == dataX.min()) and (dataY.max() == dataY.min())) ): return figure_obj # the hexbin plot of the good data img_temp = plt.hexbin(dataX, dataY, bins='log', cmap=cmaps.jet) plt.axis([dataX.min(), dataX.max(), dataY.min(), dataY.max()]) # create a color bar cb = plt.colorbar(img_temp) cb.set_label('log10 (count + 1)') # draw some extra informational lines _draw_x_equals_y_line(axes_obj, color='w', epsilon=epsilon, epsilonColor='k') # add the units to the x and y labels tempXLabel = xLabel tempYLabel = yLabel if (str.lower(str(units_x)) != "none") and (str.lower(str(units_x)) != "1") : tempXLabel = tempXLabel + " in " + units_x if (str.lower(str(units_y)) != "none") and (str.lower(str(units_y)) != "1") : tempYLabel = tempYLabel + " in " + units_y # and some informational stuff axes_obj.set_title(title_str) plt.xlabel(tempXLabel) plt.ylabel(tempYLabel) # format our axes so they display gracefully yFormatter = FormatStrFormatter("%4.4g") axes_obj.yaxis.set_major_formatter(yFormatter) xFormatter = FormatStrFormatter("%4.4g") axes_obj.xaxis.set_major_formatter(xFormatter) return figure_obj def _draw_x_equals_y_line(axes_obj, color='k', ln_style='--', epsilon=None, epsilonColor='#00FF00', epsilonStyle='--') : """ Draw the x = y line using the axes and color/style given If epsilon is not None, also draw the +/- epsilon lines, if they fall in the graph """ # get the bounds for our calculations and so we can reset the viewing window later xbounds = axes_obj.get_xbound() ybounds = axes_obj.get_ybound() # figure out the size of the ranges x_range = xbounds[1] - xbounds[0] y_range = ybounds[1] - ybounds[0] # draw the x=y line perfect = [max(xbounds[0], ybounds[0]), min(xbounds[1], ybounds[1])] axes_obj.plot(perfect, perfect, ln_style, color=color, label='A = B') # now draw the epsilon bound lines if they are visible and the lines won't be the same as A = B if (not (epsilon is None)) and (epsilon > 0.0) and (epsilon < x_range) and (epsilon < y_range): # plot the top line axes_obj.plot([perfect[0], perfect[1] - epsilon], [perfect[0] + epsilon, perfect[1]], epsilonStyle, color=epsilonColor, label='+/-epsilon') # plot the bottom line axes_obj.plot([perfect[0] + epsilon, perfect[1]], [perfect[0], perfect[1] - epsilon], epsilonStyle, color=epsilonColor) # reset the bounds axes_obj.set_xbound(xbounds) axes_obj.set_ybound(ybounds) # build a histogram figure of the given data with the given title and number of bins def create_histogram(data, bins, title_str, xLabel, yLabel, displayStats=False, units=None, rangeList=None) : if (data is None) or (data.size <= 1) : LOG.debug("Not enough data to make a meaningful histogram figure.") return None # make the figure figure_obj = plt.figure() axes_obj = figure_obj.add_subplot(111) if rangeList is not None : assert len(rangeList) == 2 assert rangeList[0] < rangeList[1] # the histogram of the data _, _, _ = plt.hist(data, bins, range=rangeList) # if rangeList is None the range won't be restricted # the returns we aren't using here are: "n, outBins, patches" # format our axes so they display gracefully yFormatter = FormatStrFormatter("%3.3g") axes_obj.yaxis.set_major_formatter(yFormatter) xFormatter = FormatStrFormatter("%.4g") axes_obj.xaxis.set_major_formatter(xFormatter) # add the units to the x and y labels tempXLabel = xLabel if (str.lower(str(units)) != "none") and (str.lower(str(units)) != "1") : tempXLabel = tempXLabel + " in " + units # and some informational stuff axes_obj.set_title(title_str) plt.xlabel(tempXLabel) plt.ylabel(yLabel) # if stats were passed in, put some of the information on the graph # the location is in the form x, y (I think) if displayStats : # info on the basic stats tempMask = ones(data.shape, dtype=bool) tempStats = statistics.NumericalComparisonStatistics.basic_analysis(data, tempMask) medianVal = tempStats['median_delta'] meanVal = tempStats['mean_delta'] stdVal = tempStats['std_val'] numPts = data.size # info on the display of our statistics xbounds = axes_obj.get_xbound() numBinsToUse = bins x_range = xbounds[1] - xbounds[0] binSize = x_range / float(numBinsToUse) # build the display string statText = ('%1.2e' % numPts) + ' data points' statText = statText + '\n' + 'mean: ' + report.make_formatted_display_string(meanVal) statText = statText + '\n' + 'median: ' + report.make_formatted_display_string(medianVal) statText = statText + '\n' + 'std: ' + report.make_formatted_display_string(stdVal) statText = statText + '\n\n' + 'intervals: ' + report.make_formatted_display_string(numBinsToUse) statText = statText + '\n' + 'interval size ' + report.make_formatted_display_string(binSize) # figure out where to place the text and put it on the figure centerOfDisplay = xbounds[0] + (float(x_range) / 2.0) xValToUse = 0.67 # if most of the values will be on the right, move our text to the left... if medianVal > centerOfDisplay : xValToUse = 0.17 figtext(xValToUse, 0.60, statText) # make sure we didn't mess up the range if it's being restricted # (this may be unnessicary, but it's a good extra precaution) if rangeList is not None: plt.xlim(rangeList) return figure_obj # create a figure including our data mapped onto a map at the lon/lat given # the colorMap parameter can be used to control the colors the figure is drawn in # if any masks are passed in the tagData list they will be plotted as an overlays # set on the existing image def create_mapped_figure(data, latitude, longitude, in_projection, out_projection, boundingAxes, title_str, invalidMask=None, colorMap=None, tagData=None, dataRanges=None, dataRangeNames=None, dataRangeColors=None, units=None, **kwargs) : # build the plot figure_obj = plt.figure() axes_obj = figure_obj.add_subplot(111, projection=out_projection,) if (data is None) or (data.size <= 1) or (invalidMask is not None and data[~invalidMask].size <= 1): LOG.debug("Not enough data to make a meaningful mapped figure.") return figure_obj # make a clean version of our lon/lat latitudeClean = ma.array(latitude, mask=~invalidMask) longitudeClean = ma.array(longitude, mask=~invalidMask) # build extra info to go to the map plotting function kwargs = { } if kwargs is None else kwargs # figure the range for the color bars # this is controllable with the "dataRanges" parameter for discrete data display if data is not None : if dataRanges is None : dataRanges = make_range(data, ~invalidMask, 50, offset_to_range=offsetToRange) else: # make sure the user range will not discard data TODO, find a better way to handle this dataRanges[0] -= offsetToRange dataRanges[len(dataRanges) - 1] += offsetToRange kwargs['levelsToUse'] = dataRanges if dataRangeColors is not None : kwargs['colors'] = dataRangeColors # add in the list of colors (may be None) # if we've got a color map, pass it to the list of things we want to tell the plotting function if colorMap is not None : kwargs['cmap'] = colorMap # draw our data placed on a map maps.draw_basic_features(in_projection, axes_obj, boundingAxes,) img_temp = maps.contourf_on_map(longitudeClean, latitudeClean, data, axes_obj, in_projection, **kwargs) # and some informational stuff axes_obj.set_title(title_str) # show a generic color bar doLabelRanges = False if data is not None : cbar = colorbar(img_temp, format='%.3g') # if there are specific requested labels, add them if not (dataRangeNames is None) : # set the number of ticks on the axis to match the ranges they defined cbar.set_ticks(dataRanges) # if we don't have exactly the right number of range names to label the ranges # then label the tick marks if len(dataRangeNames) != (len(dataRanges) - 1) : cbar.ax.set_yticklabels(dataRangeNames) else : # we will want to label the ranges themselves # FUTURE this is not a general solution for getting the labels centered offsetSpace = '\n\n\n' if len(dataRangeNames) <= 8 else '\n\n' newNames = [] newNames.extend(dataRangeNames) newNames.append("") newNames = [x + offsetSpace for x in newNames] cbar.ax.set_yticklabels(newNames) doLabelRanges = True else : # add the units to the colorbar if (str.lower(str(units)) != "none") and (str.lower(str(units)) != "1") : cbar.set_label(units) # plot our mismatch points numMismatchPoints = _plot_tag_data_mapped(axes_obj, in_projection, tagData, longitudeClean, latitudeClean, ) LOG.debug ('number of mismatch points: ' + str(numMismatchPoints)) # if we still need to label the ranges, do it now that our fake axis won't mess the mismatch points up if doLabelRanges : """ TODO get this working properly fakeAx = plt.axes ([0.77, 0.05, 0.2, 0.9], frameon=False) fakeAx.xaxis.set_visible(False) fakeAx.yaxis.set_visible(False) testRect = Rectangle((0, 0), 1, 1, fc="r") legendKey = fakeAx.legend([testRect], ["r\n\n\n"], mode="expand", ncol=1, borderaxespad=0.) """ return figure_obj def create_quiver_mapped_figure(data, latitude, longitude, in_projection, out_projection, boundingAxes, title_str, invalidMask=None, tagData=None, uData=None, vData=None, units=None, colorMap=None, **kwargs) : """create a figure including a quiver plot of our vector data mapped onto a map at the lon/lat if any masks are passed in the tagData list they will be plotted as an overlays set on the existing image """ if (data is None) or (data.size < 1) or (invalidMask is not None and data[~invalidMask].size < 1): LOG.debug("Not enough data to make a meaningful quiver mapped figure.") return None # make a clean version of our lon/lat/data latitudeClean = latitude[~invalidMask] longitudeClean = longitude[~invalidMask] colorData = None if data is not None : colorData = data[~invalidMask] uDataClean = None vDataClean = None if (uData is not None) and (vData is not None) : uDataClean = uData[~invalidMask] vDataClean = vData[~invalidMask] tagDataClean = None if tagData is not None : tagDataClean = tagData[~invalidMask] # build the plot figure_obj = plt.figure() axes_obj = figure_obj.add_subplot(111, projection=out_projection,) # draw our data placed on a map maps.draw_basic_features(in_projection, axes_obj, boundingAxes, ) img_temp = maps.quiver_plot_on_map(longitudeClean, latitudeClean, axes_obj, in_projection, uDataClean, vDataClean, colorMap=colorMap, colordata=colorData, ) # show the title axes_obj.set_title(title_str) # make a color bar if we have color data if colorData is not None : cbar = plt.colorbar(img_temp, format='%.3g') # add the units to the colorbar if (str.lower(str(units)) != "none") and (str.lower(str(units)) != "1") : cbar.set_label(units) numMismatchPoints = _plot_tag_data_mapped(axes_obj, in_projection, tagDataClean, longitudeClean, latitudeClean, ) LOG.debug('number of mismatch points: ' + str(numMismatchPoints)) return figure_obj def create_raw_image_plot(data, figureTitle, hideAxesLabels=True) : """ for drawing rgb and rgba images we want an uncomplicated version of this call """ # build the plot figure_obj = plt.figure() axes_obj = figure_obj.add_subplot(111) if (data is not None) and (data.size > 1) : # draw our data plt.imshow(data) # set the title axes_obj.set_title(figureTitle) if hideAxesLabels : axes_obj.get_xaxis().set_visible(False) axes_obj.get_yaxis().set_visible(False) return figure_obj def create_simple_figure(data, figureTitle, invalidMask=None, tagData=None, colorMap=None, colorbarLimits=None, units=None, drawColorbar=True) : """ create a simple figure showing the data given masked by the invalid mask any tagData passed in will be interpreted as mismatch points on the image and plotted as a filled contour overlay in green on the image if a colorMap is given it will be used to plot the data, if not the default colorMap for imshow will be used """ cleanData = ma.array(data, mask=invalidMask) # build the plot figure_obj = plt.figure() axes_obj = figure_obj.add_subplot(111) if (data is None) or (data.size <= 1) or (invalidMask is not None and data[~invalidMask].size <= 1): LOG.debug("Not enough data to make a meaningful simple figure.") return figure_obj # build extra info to go to the map plotting function kwargs = { } # if we've got a color map, pass it to the list of things we want to tell the plotting function if not (colorMap is None) : kwargs['cmap'] = colorMap if colorMap is np.nan : kwargs['cmap'] = None if (data is not None) and (np.sum(~invalidMask) > 0) : # draw our data img_temp = imshow(cleanData, **kwargs) if drawColorbar : # if our colorbar has limits set those if colorbarLimits is not None : LOG.debug("setting colorbar limits: " + str(colorbarLimits)) clim(vmin=colorbarLimits[0], vmax=colorbarLimits[-1]) # make a color bar cbar = colorbar(img_temp, format='%.3g') # add the units to the colorbar if (str.lower(str(units)) != "none") and (str.lower(str(units)) != "1") : cbar.set_label(units) # and some informational stuff axes_obj.set_title(figureTitle) numMismatchPoints = _plot_tag_data_simple(tagData, axes_obj) LOG.debug('number of mismatch points: ' + str(numMismatchPoints)) return figure_obj def create_line_plot_figure(dataList, figureTitle) : """ create a basic line plot of the data vs. it's index, ignoring any invalid data if tagData is given, under-label those points with green circles Each entry in the dataList should be a tupple containing: (data, invalidMask, colorString, labelName, tagData, units) The color string describes a color for plotting in matplotlib. The label names will be used for the legend, which will be shown if there is more than one set of data plotted or if there is tag data plotted. Invalid masks, colors, and label names may be given as None, in which case no data will be masked and a default label of "data#" (where # is an arbitrary unique counter) will be used. tagData may also be passed as None if tagging is not desired in the output. units describes the units used to measure the data (such as mm or degrees) and will be used to label the plot. units may be passed as None. """ # build the plot figure_obj = plt.figure() axes_obj = figure_obj.add_subplot(111) # plot each of the data sets dataSetLabelNumber = 1 minTagPts = -1 maxTagPts = -1 plottedTagData = False for dataSet, invalidMask, colorString, labelName, tagData, units in dataList : # if we don't have these, set them to defaults if invalidMask is None : invalidMask = zeros(dataSet.size, dtype=bool) if labelName is None : labelName = 'data' + str(dataSetLabelNumber) dataSetLabelNumber += 1 if colorString is None: colorString = '' if (dataSet is not None) and (sum(invalidMask) < invalidMask.size) : # if we don't have a real min yet, set it based on the size if minTagPts < 0 : minTagPts = dataSet.size + 1 indexData = ma.array(list(range(dataSet.size)), mask=invalidMask.ravel()) cleanData = ma.array(dataSet.ravel(), mask=invalidMask.ravel()) # plot the tag data and gather information about it if tagData is not None : plottedTagData = True numMismatchPoints = sum(tagData) LOG.debug('\t\tnumber of mismatch points: ' + str(numMismatchPoints)) if numMismatchPoints < minTagPts: minTagPts = numMismatchPoints if numMismatchPoints > maxTagPts : maxTagPts = numMismatchPoints # if we have mismatch points, we need to show them if numMismatchPoints > 0: cleanTagData = ma.array(dataSet.ravel(), mask=~tagData.ravel() | invalidMask.ravel()) axes_obj.plot(indexData, cleanTagData, 'yo', label='mismatch point') if (str.lower(str(units)) !="none") and (str.lower(str(units)) != "1") : labelName = labelName + " in " + units axes_obj.plot(indexData, cleanData, '-' + colorString, label=labelName) # display the number of mismatch points on the report if we were passed # a set of tag data and we were able to compare it to some actual data if plottedTagData and (minTagPts >= 0) and (maxTagPts >=0) : mismatchPtString = '\nMarking ' if minTagPts == maxTagPts : mismatchPtString = mismatchPtString + str(minTagPts) + ' Mismatch Points with Yellow Circles' else : mismatchPtString = (mismatchPtString + 'between ' + str(minTagPts) + ' and ' + str(maxTagPts) + ' Mismatch Points' + '\non the various data sets (using Yellow Circles)') plt.xlabel(mismatchPtString) if (len(dataList) > 1) or plottedTagData : # make a key to explain our plot # as long as things have been plotted with proper labels they should show up here axes_obj.legend(loc=0, markerscale=3.0) # Note: at the moment markerscale doesn't seem to work pass # and some informational stuff axes_obj.set_title(figureTitle) return figure_obj if __name__=='__main__': import doctest doctest.testmod()