diff --git a/pyglance/glance/imapp_plot.py b/pyglance/glance/imapp_plot.py index 9cd6d194042adfc5370300e316334431be1fd247..7296b3cdcb8e4e9d049b77b5776bbae44b2ecde4 100644 --- a/pyglance/glance/imapp_plot.py +++ b/pyglance/glance/imapp_plot.py @@ -93,6 +93,23 @@ color_data = { } light_trajectory_pressure_color_map = matplotlib.colors.LinearSegmentedColormap('lightTrajPressCM', color_data, 256) +lightningColorMapData = { 'red': ((0.0, 1.00, 1.00), + (0.25, 1.00, 1.00), + (0.5, 1.00, 1.00), + (0.75, 1.00, 0.00), + (1.00, 0.00, 0.00)), + 'green': ((0.0, 0.00, 0.00), + (0.25, 0.00, 0.00), + (0.5, 0.00, 1.00), + (0.75, 1.00, 0.55), + (1.00, 0.55, 0.55)), + 'blue': ((0.0, 1.00, 1.00), + (0.25, 1.00, 0.00), + (0.5, 0.00, 0.00), + (0.75, 0.00, 0.00), + (1.00, 0.00, 0.00)) } +lightningColorMap = colors.LinearSegmentedColormap('lightningColorMap', lightningColorMapData, 256) + def _check_requested_projection (projection, doWarn=True, fileDescription="") : """ Check the requested projection, issuing a warning if it is not available and doWarn is true @@ -475,14 +492,16 @@ def _create_imapp_figure (initAODdata, initLongitudeData, initLatitu return figure -def _create_thermal_couplets_figure(basemapObject, centersMask, longitudeData, latitudeData, colormap=cm.jet) : +def _create_thermal_couplets_figure(basemapObject, centersMask, longitudeData, latitudeData, colormap=cm.jet, + plotWarningCircles=False, warningDistance=25.0, useDarkBackground=False, title="Overshooting Tops/Thermal Couplets", + datetime=None) : """ Plot the thermal couplet centers using a mask that identifies where they are TODO, this is not finished at all """ # build the basic map plot plot - axes, figure = _build_basic_figure_with_map (basemapObject, parallelWidth=5.0, meridianWidth=5.0, useDarkBackground=False,) + axes, figure = _build_basic_figure_with_map (basemapObject, parallelWidth=5.0, meridianWidth=5.0, useDarkBackground=useDarkBackground,) # build extra info to go to the map plotting function kwargs = { } @@ -495,19 +514,75 @@ def _create_thermal_couplets_figure(basemapObject, centersMask, longitudeData, l centersLon = longitudeData[centersMask] centersLat = latitudeData[centersMask] tempX, tempY = basemapObject(centersLon, centersLat) - p = basemapObject.plot(tempX, tempY, 'bs') - # if our colorbar has limits set those - #if colorbarLimits is not None : - # clim(vmin=colorbarLimits[0], vmax=colorbarLimits[-1]) - # make a color bar - #cbar = colorbar(format='%.3g') - # add the units to the colorbar - #if str.lower(str(units)) != "none" : - # cbar.set_label(units) + # if we're just plotting the positions of the centers, do that + if not plotWarningCircles : + p = basemapObject.plot(tempX, tempY, 'bo', markersize=3.0) + else : # otherwise we must be plotting circles to warn where something could happen! + # TODO, this is not really the way this should work in the long run + degreesToUse = (warningDistance / 111.0) / 2.0 # TODO this is a very rough approximation of 1 degree latitude = 111 km, if needed do more complex math + for centerNum in range(len(centersLat)) : + p = basemapObject.tissot(centersLon[centerNum], centersLat[centerNum], degreesToUse, 100, facecolor='yellow', alpha=0.5, lw=0) # and some informational stuff - axes.set_title("Overshooting Tops/Thermal Couplets") + tempTitle = title + if datetime is not None : + tempTitle = title + ": " + datetime.strftime("%Y-%m-%d at %H:%M UTC") + axes.set_title(tempTitle) + + return figure + +def _create_lightning_risk_figure(basemapObject, riskAreasInfoList, + warningDistance=10.0, useDarkBackground=True, title="Lightning Risk", + colorbarLabel="Lightning Risk within 10 km of overshooting top (%)", + datetime=None) : + """ + Plot areas of lightning risk colored based on the % chance of cloud-to-ground lightning + + the riskAreasInfoList should be a list with entries in the form (lonArray, latArray, percentageChance, colorToPlotIn, alphaToPlotWith) + + TODO, this is not finished at all + """ + + # build the basic map plot plot + axes, figure = _build_basic_figure_with_map (basemapObject, parallelWidth=5.0, meridianWidth=5.0, useDarkBackground=useDarkBackground,) + + # build extra info to go to the map plotting function + kwargs = { } + + # hang on to info about the percentages and their colors + riskPercentsColors = { } + # we're going to need to loop through all the sets to plot them + for (lonArray, latArray, percentageChance, colorToPlotIn, alphaToPlotWith) in riskAreasInfoList : + riskPercentsColors[percentageChance] = colorToPlotIn + # TODO, this is not really the way this should work in the long run + degreesToUse = (warningDistance / 111.0) # TODO this is a very rough approximation of 1 degree latitude = 111 km, if needed do more complex math + for centerNum in range(len(lonArray)) : + p = basemapObject.tissot(lonArray[centerNum], latArray[centerNum], degreesToUse, 100, facecolor=colorToPlotIn, alpha=alphaToPlotWith, lw=0) + + # TODO, use riskPercentsColors to build a colorbar? + + percentages = sorted(riskPercentsColors.keys()) + + tempMap = cm.ScalarMappable(cmap=lightningColorMap) + tempMap.set_clim(vmin=0.0, vmax=1.0) + tempMap.set_array([0.0, 1.0]) + # this unfortunately leaves black tick marks on the bar itself, but it does let me separate it into four sections + colorBarToReturn = colorbar(tempMap, format='%.5g', orientation='horizontal', shrink=0.5, ticks=[(1./8.), (3./8.), (5./8.), (7./8.)]) + colorBarToReturn.ax.set_xticklabels(["70", "65", "50", "35"]) + # TODO, for some reason python doesn't think that colorbar has an update_ticks? + #colorBarToReturn.locator = matplotlib.ticker.FixedLocator([(1./8.), (3./8.), (5./8.), (7./8.)]) + #colorBarToReturn.formatter = matplotlib.ticker.FixedFormatter(["70", "65", "50", "35"]) + #colorBarToReturn.update_ticks() + #for tempText in colorBarToReturn.ax.get_xticklabels(): + # tempText.set_fontsize(5) + colorBarToReturn.set_label(colorbarLabel, fontsize=8) + + # and some informational stuff + tempTitle = title + if datetime is not None : + tempTitle = title + ": " + datetime.strftime("%Y-%m-%d at %H:%M UTC") + axes.set_title(tempTitle) return figure @@ -638,6 +713,7 @@ python -m glance.imapp_plot aodTraj traj.nc optionalGrid.nc # create some masks to identify things about the data centersMask = otQAFlag == 0 goodData = otPQIFlag == 1 + goodCenters = centersMask & goodData # get more display information TODO, this may not be used? parallelWidth = options.parallelWidth @@ -646,21 +722,44 @@ python -m glance.imapp_plot aodTraj traj.nc optionalGrid.nc # get the longitude and latitude information, then use that to figure out the viewing window longitudeData = otFileObject.file_object["pixel_longitude"] latitudeData = otFileObject.file_object["pixel_latitude"] - minLongitude = np.min(longitudeData) - maxLongitude = np.max(longitudeData) - minLatitude = np.min(latitudeData) - maxLatitude = np.max(latitudeData) + missingLonVal = otFileObject.file_object.missing_value("pixel_longitude") + missingLatVal = otFileObject.file_object.missing_value("pixel_latitude") + tempMaskLon = (longitudeData != missingLonVal) & goodCenters # for now only look at good data + tempMaskLat = (latitudeData != missingLatVal) & goodCenters # for now only look at good data + lonTemp = longitudeData[tempMaskLon] + latTemp = latitudeData [tempMaskLat] + minLongitude = np.min(lonTemp) + maxLongitude = np.max(lonTemp) + minLatitude = np.min(latTemp) + maxLatitude = np.max(latTemp) # do some more lon / lat calculations latRange = maxLatitude - minLatitude lonRange = maxLongitude - minLongitude centerLat = minLatitude + (latRange / 2.0) centerLon = minLongitude + (lonRange / 2.0) - + # TEMP expand the range by a bit to alow space around our good data points + minLatitude = minLatitude - (latRange / 4.0) + maxLatitude = maxLatitude + (latRange / 4.0) + minLongitude = minLongitude - (lonRange / 4.0) + maxLongitude = maxLongitude + (lonRange / 4.0) # make sure the view window longitudes are in ranges that matplotlib will accept minLongitude, maxLongitude, shouldModifyNegativeLons = _modify_view_window_longitudes(minLongitude, maxLongitude) + # TODO, haven't hooked up the boolean to control modification of negative longitudes yet + # get the base time information and translate it into a date time object + dateString = otFileObject.file_object.get_global_attribute("Image_Date") + timeString = otFileObject.file_object.get_global_attribute("Image_Time") + dateTimeStringTemp = str(dateString) + "." + str(timeString) + timeReferenceObject = None + try : + timeReferenceObject = datetime.strptime(dateTimeStringTemp, "1%y%j.%H%M%S") + except ValueError : + LOG.warn ("Unable to parse datetime from file. No datetime information will be displayed on images.") + timeReferenceObject = None + LOG.debug("image time information: " + str(timeReferenceObject)) + # build a basemap LOG.info("Building basemap object.") projectionName = 'lcc' # use the Lambert Conformal projection; TODO at some point this will need to be checked with a global attribute @@ -672,7 +771,7 @@ python -m glance.imapp_plot aodTraj traj.nc optionalGrid.nc # create a plot of the centers of the thermal couplets LOG.info ("Creating plot of Overshooting Top center locations.") - tempFigure = _create_thermal_couplets_figure(basemapObject, centersMask & goodData, longitudeData, latitudeData) # TODO, more will be needed here? + tempFigure = _create_thermal_couplets_figure(basemapObject, goodCenters, longitudeData, latitudeData, datetime=timeReferenceObject) # TODO, more will be needed here? # save the plot and then get rid of the local copy LOG.info("Saving plot to disk.") @@ -680,6 +779,40 @@ python -m glance.imapp_plot aodTraj traj.nc optionalGrid.nc tempFigure.savefig(figureNameAndPath, dpi=defaultValues['figureDPI']) plt.close(tempFigure) del(tempFigure) + + # create a plot of the turbulence around the centers + LOG.info ("Creating plot of Turbulence Risk.") + tempFigure = _create_thermal_couplets_figure(basemapObject, goodCenters, longitudeData, latitudeData, + plotWarningCircles=True, useDarkBackground=True, title="Turbulence Risk", datetime=timeReferenceObject) # TODO, more will be needed here? + + # save the plot and then get rid of the local copy + LOG.info("Saving plot to disk.") + figureNameAndPath = os.path.join(options.outpath, "turbulenceRisk" + defaultValues['figureName']) # TODO, need a constant other than 'figureName' + tempFigure.savefig(figureNameAndPath, dpi=defaultValues['figureDPI']) + plt.close(tempFigure) + del(tempFigure) + + # create a plot of the lightning risks near the centers + LOG.info ("Creating plot of Lightning Risk.") + tempLon = longitudeData[goodCenters] + tempLat = latitudeData[goodCenters] + LOG.debug ("Number of OT centers: " + str(tempLat.size)) + # the riskAreas should be a list with entries in the form (lonArray, latArray, percentageChance, colorToPlotIn, alphaToPlotWith) + # TODO this is temp test code to make dummy data and is very fragile + riskAreas = [ ] + if tempLat.size > 0 : + riskAreas = [(tempLon[ : 5], tempLat[ : 5], 65, 'red', 0.75), + (tempLon[ 5:10], tempLat[ 5:10], 50, 'yellow', 0.75), + (tempLon[10:20], tempLat[10:20], 70, 'magenta', 0.75), + (tempLon[20: ], tempLat[20: ], 35, 'green', 0.75)] # TODO, this is just some dummy data to test it + tempFigure = _create_lightning_risk_figure(basemapObject, riskAreas, datetime=timeReferenceObject) + + # save the plot and then get rid of the local copy + LOG.info("Saving plot to disk.") + figureNameAndPath = os.path.join(options.outpath, "lightningRisk" + defaultValues['figureName']) # TODO, need a constant other than 'figureName' + tempFigure.savefig(figureNameAndPath, dpi=defaultValues['figureDPI']) + plt.close(tempFigure) + del(tempFigure) def aodTraj(*args): """plot AOD trajectory frames