io.py 54.3 KB
Newer Older
(no author)'s avatar
(no author) committed
1
2
3
4
5
6
7
8
9
#!/usr/bin/env python
# encoding: utf-8
"""
I/O routines supporting reading a number of file formats.

Created by rayg Apr 2009.
Copyright (c) 2009 University of Wisconsin SSEC. All rights reserved.
"""

10
import os, logging
11
import numpy
12
from functools import reduce
(no author)'s avatar
   
(no author) committed
13
14

LOG = logging.getLogger(__name__)
(no author)'s avatar
(no author) committed
15

16
17
Loadable_Types = set()

(no author)'s avatar
   
(no author) committed
18
19
20
try:
    import pyhdf
    from pyhdf.SD import SD,SDC, SDS, HDF4Error
21
    Loadable_Types.add("hdf")
(no author)'s avatar
   
(no author) committed
22
23
24
25
26
27
except:
    LOG.info('no pyhdf module available for HDF4')
    pyhdf = None
    SD = SDC = SDS = object
    HDF4Error = EnvironmentError
    
28
29
try:
    import h5py
30
    from h5py import h5d
31
    Loadable_Types.add("h5")
32
except ImportError:
(no author)'s avatar
   
(no author) committed
33
34
    LOG.info('no h5py module available for reading HDF5')
    h5py = None
(no author)'s avatar
(no author) committed
35

36
37
38
# the newer netCDF library that replaced pycdf
try:
    import netCDF4
39
    Loadable_Types.update(["nc", "nc4", "cdf", ])
40
41
42
43
except:
    LOG.info("unable to import netcdf4 library")
    netCDF4 = None

(no author)'s avatar
(no author) committed
44
45
46
try:
    import dmv as dmvlib
    LOG.info('loaded dmv module for AERI data file access')
47
    Loadable_Types.update(["cxs", "rnc", "cxv", "csv", "spc", "sum", "uvs", "aeri", ])
(no author)'s avatar
(no author) committed
48
49
50
51
except ImportError:
    LOG.info('no AERI dmv data file format module')
    dmvlib = None

(no author)'s avatar
   
(no author) committed
52
53
54
try:
    import adl_blob
    LOG.info('adl_blob module found for JPSS ADL data file access')
55
    # TODO, what is the loadable file extension?
(no author)'s avatar
   
(no author) committed
56
57
58
59
except ImportError:
    LOG.info('no adl_blob format handler available')
    adl_blob = None

60
61
62
try :
    from osgeo import gdal
    LOG.info('loading osgeo module for GeoTIFF data file access')
63
    Loadable_Types.update(["tiff", "tif", "tifa", ])
64
65
66
67
except :
    LOG.info('no osgeo available for reading GeoTIFF data files')
    gdal = None

68
UNITS_CONSTANT = "units"
(no author)'s avatar
(no author) committed
69

70
71
72
fillValConst1 = '_FillValue'
fillValConst2 = 'missing_value'

73
74
75
76
ADD_OFFSET_STR   = 'add_offset'
SCALE_FACTOR_STR = 'scale_factor'
SCALE_METHOD_STR = 'scaling_method'

77
78
79
UNSIGNED_ATTR_STR = "_unsigned"

SIGNED_TO_UNSIGNED_DTYPES = {
80
81
82
83
                                numpy.dtype(numpy.int8):    numpy.dtype(numpy.uint8),
                                numpy.dtype(numpy.int16):   numpy.dtype(numpy.uint16),
                                numpy.dtype(numpy.int32):   numpy.dtype(numpy.uint32),
                                numpy.dtype(numpy.int64):   numpy.dtype(numpy.uint64),
84
85
                            }

86
87
88
89
90
91
92
93
94
95
96
class IOUnimplimentedError(Exception):
    """
    The exception raised when a requested io operation is not yet available.
    
        msg  -- explanation of the problem
    """
    def __init__(self, msg):
        self.msg = msg
    def __str__(self):
        return self.msg

97
98
99
100
101
102
class IONonnumericalTypeError(Exception):
    """
    A type was encountered that numpy doesn't know how to deal with - e.g. netCDF variable-length string arrays
    """
    pass

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class CaseInsensitiveAttributeCache (object) :
    """
    A cache of attributes for a single file and all of it's variables.
    This cache is considered uncased, it will store all attributes it caches
    in lower case and will lower case any strings it is asked to search for
    in the cache.
    When variable or global attribute sets are not yet loaded and something
    from that part of the file is requested the cache will transparently load
    attributes from the file behind the scenes and build the cache for that
    part of the file.
    """
    
    def __init__(self, fileObject) :
        """
        set up the empty cache and hang on to the file object we'll be caching
        """
        
        self.fileToCache             = fileObject
        self.globalAttributesLower   = None
        self.variableAttributesLower = { }
    
    def _load_global_attributes_if_needed (self) :
        """
        load up the global attributes if they need to be cached
        """
        
        # load the attributes from the file if they aren't cached
        if self.globalAttributesLower is None :
            LOG.debug ("Loading file global attributes into case-insensitive cache.")
            tempAttrs                  = self.fileToCache.get_global_attributes(caseInsensitive=False)
            self.globalAttributesLower = dict((k.lower(), v) for k, v in tempAttrs.items())
    
    def _load_variable_attributes_if_needed (self, variableName) :
        """
        load up the variable attributes if they need to be cached
        """
        
        # make a lower cased version of the variable name
        tempVariableName = variableName.lower()
        
        # load the variable's attributes from the file if they aren't cached
Eva Schiffer's avatar
Eva Schiffer committed
144
        if tempVariableName not in self.variableAttributesLower :
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
            LOG.debug ("Loading attributes for variable \"" + variableName + "\" into case-insensitive cache.")
            tempAttrs = self.fileToCache.get_variable_attributes(variableName, caseInsensitive=False)
            # now if there are any attributes, make a case insensitive version
            self.variableAttributesLower[tempVariableName] = dict((k.lower(), v) for k, v in tempAttrs.items())
    
    def get_variable_attribute (self, variableName, attributeName) :
        """
        get the specified attribute for the specified variable,
        if this variable's attributes have not yet been loaded
        they will be loaded and cached
        """
        
        self._load_variable_attributes_if_needed(variableName)
        
        toReturn = None
        tempVariableName  =  variableName.lower()
        tempAttributeName = attributeName.lower()
        if (tempVariableName in self.variableAttributesLower) and (tempAttributeName in self.variableAttributesLower[tempVariableName]) :
            toReturn = self.variableAttributesLower[tempVariableName][tempAttributeName]
        else:
            LOG.debug ("Attribute \"" + attributeName + "\" was not present for variable \"" + variableName + "\".")
        
        return toReturn
    
    def get_variable_attributes (self, variableName) :
        """
        get the variable attributes for the variable name given
        """
        
        self._load_variable_attributes_if_needed(variableName)
        
        toReturn = self.variableAttributesLower[variableName.lower()] if (variableName.lower() in self.variableAttributesLower) else None
        
        return toReturn
    
    def get_global_attribute (self, attributeName) :
        """
        get a global attribute with the given name
        """
        
        self._load_global_attributes_if_needed()
        
        toReturn = self.globalAttributesLower[attributeName.lower()] if (attributeName.lower() in self.globalAttributesLower) else None
        
        return toReturn
    
    def get_global_attributes (self) :
        """
        get the global attributes,
        """
        
        self._load_global_attributes_if_needed()
        
        toReturn = self.globalAttributesLower
        
        return toReturn
201
202
203
204
205
206
207
208
    
    def is_loadable_type (self, name) :
        """
        check to see if the indicated variable is a type that can be loaded
        """
        
        # TODO, are there any bad types for these files?
        return True
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def _get_data_uptype (input_dtype) :
    """
    Given an input data type, figure out what type we need to upcast it to.

    Note: Glance expects all it's data to get upcast into floats for the purposes of it's
    later math manipulations.
    """

    default_uptype = numpy.float32
    default_finfo  = numpy.finfo(default_uptype)
    input_info     = numpy.finfo(input_dtype) if  numpy.issubdtype(input_dtype, numpy.floating,) else numpy.iinfo(input_dtype)

    # if our input won't fit into the default, pick a bigger type
    if ( (default_finfo.min > input_info.min) or (default_finfo.max < input_info.max) ) :
        LOG.debug("Input data will not fit in default float32 data type, using larger type.")
        default_uptype = numpy.float64

    # FUTURE, if we reach a point where a float64 isn't big enough, this will need to be revisited

    return default_uptype

231
class hdf (object):
(no author)'s avatar
(no author) committed
232
233
234
235
236
    """wrapper for HDF4 dataset for comparison
    __call__ yields sequence of variable names
    __getitem__ returns individual variables ready for slicing to numpy arrays
    """
    
237
238
    _hdf = None
    
239
    def __init__(self, filename, allowWrite=False):
240
        
(no author)'s avatar
   
(no author) committed
241
242
243
        if pyhdf is None:
            LOG.error('pyhdf is not installed and is needed in order to read hdf4 files')
            assert(pyhdf is not None)
244
245
246
        mode = SDC.READ
        if allowWrite:
            mode = mode | SDC.WRITE
247
248
249
        
        self._hdf = SD(filename, mode)
        self.attributeCache = CaseInsensitiveAttributeCache(self)
(no author)'s avatar
(no author) committed
250
251
252

    def __call__(self):
        "yield names of variables to be compared"
Eva Schiffer's avatar
Eva Schiffer committed
253
        return list(self._hdf.datasets())
(no author)'s avatar
(no author) committed
254
    
255
256
257
258
    # this returns a numpy array with a copy of the full, scaled
    # data for this variable, if the data type must be changed to allow
    # for scaling it will be (so the return type may not reflect the
    # type found in the original file)
(no author)'s avatar
(no author) committed
259
    def __getitem__(self, name):
260
261
262
        # defaults
        scale_factor = 1.0
        add_offset = 0.0
263
        data_type = None 
(no author)'s avatar
(no author) committed
264
        scaling_method = None
265
266
267
268
269
270
271
272
273
        
        # get the variable object and use it to
        # get our raw data and scaling info
        variable_object = self.get_variable_object(name)
        raw_data_copy = variable_object[:]
        try :
            # TODO, this currently won't work with geocat data, work around it for now
            scale_factor, scale_factor_error, add_offset, add_offset_error, data_type = SDS.getcal(variable_object)
        except HDF4Error:
274
275
            # load just the scale factor and add offset information by hand
            temp = self.attributeCache.get_variable_attributes(name)
Eva Schiffer's avatar
Eva Schiffer committed
276
            if ADD_OFFSET_STR in temp :
277
                add_offset = temp[ADD_OFFSET_STR]
278
                data_type = numpy.dtype(type(add_offset))
Eva Schiffer's avatar
Eva Schiffer committed
279
            if SCALE_FACTOR_STR in temp :
280
                scale_factor = temp[SCALE_FACTOR_STR]
281
                data_type = numpy.dtype(type(scale_factor))
Eva Schiffer's avatar
Eva Schiffer committed
282
            if SCALE_METHOD_STR in temp :
283
                scaling_method = temp[SCALE_METHOD_STR]
284
        SDS.endaccess(variable_object)
(no author)'s avatar
(no author) committed
285
        
286
287
288
289
        # don't do lots of work if we don't need to scale things
        if (scale_factor == 1.0) and (add_offset == 0.0) :
            return raw_data_copy
        
290
291
292
293
294
295
296
297
298
299
        # at the moment geocat has several scaling methods that don't match the normal standards for hdf
        """
        please see constant.f90 for a more up to date version of this information:
            INTEGER(kind=int1) :: NO_SCALE              ! 0
            INTEGER(kind=int1) :: LINEAR_SCALE          ! 1
            INTEGER(kind=int1) :: LOG_SCALE             ! 2
            INTEGER(kind=int1) :: SQRT_SCALE            ! 3 
        """
        if (scaling_method == 0) :
            return raw_data_copy
300
        if not ((scaling_method is None) or (int(scaling_method) <= 1)) :
301
302
            LOG.warn ('Scaling method of \"' + str(scaling_method) + '\" will be ignored in favor of hdf standard method. '
                      + 'This may cause problems with data consistency')
303
        
304
305
306
        # if we don't have a data type something strange has gone wrong
        assert(not (data_type is None))
        
307
308
        # get information about where the data is the missing value
        missing_val = self.missing_value(name)
309
        missing_mask = numpy.zeros(raw_data_copy.shape, dtype=numpy.bool)
310
311
        if missing_val is not None :
            missing_mask[raw_data_copy == missing_val] = True
312
        
313
        # create the scaled version of the data
314
        scaled_data_copy                = numpy.array(raw_data_copy, dtype=data_type)
315
        scaled_data_copy[~missing_mask] = (scaled_data_copy[~missing_mask] * scale_factor) + add_offset #TODO, type truncation issues?
316
317
318
319
        
        return scaled_data_copy 
    
    def get_variable_object(self, name):
320
        return self._hdf.select(name)
321
    
(no author)'s avatar
(no author) committed
322
    def missing_value(self, name):
323
        
324
        return self.get_attribute(name, fillValConst1)
325
326
327
328
329
330
331
332
333
    
    def create_new_variable(self, variablename, missingvalue=None, data=None, variabletocopyattributesfrom=None):
        """
        create a new variable with the given name
        optionally set the missing value (fill value) and data to those given
        
        the created variable will be returned, or None if a variable could not
        be created
        """
(no author)'s avatar
(no author) committed
334
        
335
        raise IOUnimplimentedError('Unable to create variable in hdf file, this functionality is not yet available.')
336
337
338
339
340
341
342
343
        
        return None
    
    def add_attribute_data_to_variable(self, variableName, newAttributeName, newAttributeValue) :
        """
        if the attribute exists for the given variable, set it to the new value
        if the attribute does not exist for the given variable, create it and set it to the new value
        """
344
345
        
        raise IOUnimplimentedError('Unable add attribute to hdf file, this functionality is not yet available.')
346
347
        
        return
348
    
349
    def get_variable_attributes (self, variableName, caseInsensitive=True) :
350
351
352
353
        """
        returns all the attributes associated with a variable name
        """
        
354
355
356
357
358
359
360
        toReturn = None
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attributes(variableName)
        else :
            toReturn = self.get_variable_object(variableName).attributes()
        
        return toReturn
361
    
362
    def get_attribute(self, variableName, attributeName, caseInsensitive=True) :
363
364
365
366
367
        """
        returns the value of the attribute if it is available for this variable, or None
        """
        toReturn = None
        
368
369
370
371
372
373
374
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attribute(variableName, attributeName)
        else :
            temp_attributes = self.get_variable_attributes(variableName, caseInsensitive=False)
            
            if attributeName in temp_attributes :
                toReturn = temp_attributes[attributeName]
375
376
        
        return toReturn
(no author)'s avatar
(no author) committed
377
    
378
379
380
381
382
383
384
385
    def get_global_attributes(self, caseInsensitive=True) :
        """
        get a list of all the global attributes for this file or None
        """
        
        toReturn = None
        
        if caseInsensitive :
386
            toReturn = self.attributeCache.get_global_attributes()
387
388
389
390
391
392
        else :
            toReturn = self._hdf.attributes()
        
        return toReturn
    
    def get_global_attribute(self, attributeName, caseInsensitive=True) :
(no author)'s avatar
(no author) committed
393
394
395
396
397
398
        """
        returns the value of a global attribute if it is available or None
        """
        
        toReturn = None
        
399
400
401
402
403
        if caseInsensitive :
            toReturn = self.attributeCache.get_global_attribute(attributeName)
        else :
            if attributeName in self._hdf.attributes() :
                toReturn = self._hdf.attributes()[attributeName]
(no author)'s avatar
(no author) committed
404
405
        
        return toReturn
406
407
408
409
410
411
412
413
    
    def is_loadable_type (self, name) :
        """
        check to see if the indicated variable is a type that can be loaded
        """
        
        # TODO, are there any bad types for these files?
        return True
(no author)'s avatar
(no author) committed
414

415
class nc (object):
416
    """wrapper for netcdf4-python data access for comparison
(no author)'s avatar
(no author) committed
417
418
419
420
    __call__ yields sequence of variable names
    __getitem__ returns individual variables ready for slicing to numpy arrays
    """
    
421
    _nc = None
422
423
424
425
    _var_map = None

    # walk down through all groups and get variable names and objects
    def _walkgroups(self, start_at, prefix=None, ):
426
        # look through the variables that are here
Eva Schiffer's avatar
Eva Schiffer committed
427
        for var_name in start_at.variables:
428
429
            temp_name = var_name if prefix is None or len(prefix) <= 0 else prefix + "/" + var_name
            yield temp_name, start_at[var_name]
430
        # look through the groups that are here
Eva Schiffer's avatar
Eva Schiffer committed
431
        for group_name in start_at.groups:
432
433
434
            grp_str = group_name if prefix is None or len(prefix) <= 0 else prefix + "/" + group_name
            for more_var_name, more_var_obj in self._walkgroups(start_at.groups[group_name], prefix=grp_str):
                yield more_var_name, more_var_obj
435
    
436
437
    def __init__(self, filename, allowWrite=False):
        
438
439
440
        if netCDF4 is None:
            LOG.error('netCDF4 is not installed and is needed in order to read NetCDF files')
            assert(netCDF4 is not None)
(no author)'s avatar
   
(no author) committed
441
        
442
        mode = 'r'
443
        if allowWrite :
444
445
            mode = 'a' # a is for append, if I use w it creates a whole new file, deleting the old one

446
        self._nc = netCDF4.Dataset(filename, mode)
447
        self.attributeCache = CaseInsensitiveAttributeCache(self)
448
449
450
        self._var_map = { }
        for var_name, var_obj in self._walkgroups(self._nc,) :
            self._var_map[var_name] = var_obj
451

(no author)'s avatar
(no author) committed
452
    def __call__(self):
453
454
455
456
        """
        yield names of variables in this file
        """

Eva Schiffer's avatar
Eva Schiffer committed
457
        return list(self._var_map)
458

(no author)'s avatar
(no author) committed
459
    def __getitem__(self, name):
460
461
462
463
464
465
466
        """
        this returns a numpy array with a copy of the full, scaled
        data for this variable, if the data type must be changed to allow
        for scaling it will be (so the return type may not reflect the
        type found in the original file)
        """

467
468
        LOG.debug("loading variable data for: " + name)

469
470
471
        # get the variable object and use it to
        # get our raw data and scaling info
        variable_object = self.get_variable_object(name)
472

473
474
        # get our data, save the dtype, and make sure it's a more flexible dtype for now
        variable_object.set_auto_maskandscale(False)  # for now just do the darn calculations ourselves
475
476
        temp_input_data = variable_object[:]
        LOG.debug("Native input dtype: " + str(temp_input_data.dtype))
477
478
479
480
481
482
483
484
485
486
487
488
        # if this is object data, stop because we can't run our regular analysis on that kind
        if temp_input_data.dtype == object :
            LOG.warn("Variable '" + name + "' has a data type of 'object'. This type of data cannot be analyzed by Glance. "
                     "This variable will not be analyzed.")
            raise IONonnumericalTypeError("Variable '" + name + "' is of data type 'object'. "
                                          "This program can't analyze non-numerical data.")
        """
            Note to self, if we ever do want to access data in a numpy array with dtype=object, for some
            reason this library is packing that into a a zero dimensional tuple or something similar.
            I was able to unpack the data using a construction like: temp_input_data = temp_input_data[()]
            After that the array can be indexed into as normal for a numpy array.
        """
489
490
491
        dtype_to_use = _get_data_uptype(temp_input_data.dtype)
        LOG.debug("Choosing dtype " + str(dtype_to_use) + " for our internal representation of this data.")
        scaled_data_copy = numpy.array(temp_input_data, dtype=dtype_to_use,)
492
493

        # get the attribute cache so we can check on loading related attributes
494
        temp = self.attributeCache.get_variable_attributes(name)
495
496
497

        # get information about where the data is the missing value
        missing_val = self.missing_value(name)
498
        missing_mask = numpy.zeros(scaled_data_copy.shape, dtype=numpy.bool)
499
500
        if missing_val is not None:
            missing_mask[scaled_data_copy == missing_val] = True
501
502
503
504

        #***** just do the darn unsigned handling ourselves, ugh

        # if our data is labeled as being unsigned by the appropriately set attribute
Eva Schiffer's avatar
Eva Schiffer committed
505
        if UNSIGNED_ATTR_STR in temp and str(temp[UNSIGNED_ATTR_STR]).lower() == ("true"):
506
507
            LOG.debug("Correcting for unsigned values in variable data.")
            where_temp = (scaled_data_copy < 0.0) & ~missing_mask # where we have negative but not missing data
508
            scaled_data_copy[where_temp] += (numpy.iinfo(numpy.uint16).max + 1.0) # add the 2's complement
509
510
511
512
513
514
515
516
517

        #***** end of handling the unsigned attribute

        ###### the start of the scaling code
        # Note, I had to turn this back on because the netcdf4 library is behaving erratically when unsigned is set

        # get the scale factor and add offset from the attributes
        scale_factor = 1.0
        add_offset = 0.0
Eva Schiffer's avatar
Eva Schiffer committed
518
        if SCALE_FACTOR_STR in temp :
519
            scale_factor = temp[SCALE_FACTOR_STR]
Eva Schiffer's avatar
Eva Schiffer committed
520
        if ADD_OFFSET_STR in temp :
521
            add_offset = temp[ADD_OFFSET_STR]
522

523
524
        # don't do work if we don't need to unpack things
        if (scale_factor != 1.0) or (add_offset != 0.0) :
525

526
            LOG.debug("Manually applying scale (" + str(scale_factor) + ") and add offset (" + str(add_offset) + ").")
527

528
529
530
531
532
533
534
            # unpack the data
            scaled_data_copy[~missing_mask] = (scaled_data_copy[~missing_mask] * scale_factor) + add_offset

        ###### end of the scaling code

        """
        #TODO, this section was for when we had to do the unsigned correction after unpacking
Eva Schiffer's avatar
Eva Schiffer committed
535
        if UNSIGNED_ATTR_STR in temp and str(temp[UNSIGNED_ATTR_STR]).lower() == ( "true" ) :
536
537
538
539
540
541
542

            LOG.debug("fixing unsigned values in variable " + name)

            # load the scale factor and add offset
            scale_factor = 1.0
            add_offset = 0.0
            temp = self.attributeCache.get_variable_attributes(name)
Eva Schiffer's avatar
Eva Schiffer committed
543
            if SCALE_FACTOR_STR in temp :
544
                scale_factor = temp[SCALE_FACTOR_STR]
Eva Schiffer's avatar
Eva Schiffer committed
545
            if ADD_OFFSET_STR in temp :
546
547
548
549
                add_offset = temp[ADD_OFFSET_STR]

            # get the missing value and figure out the dtype of the original data
            missing_val  = self.missing_value(name)
550
            orig_dtype   = numpy.array([missing_val,]).dtype
Eva Schiffer's avatar
Eva Schiffer committed
551
            needed_dtype = SIGNED_TO_UNSIGNED_DTYPES[orig_dtype] if orig_dtype in SIGNED_TO_UNSIGNED_DTYPES else None
552
553
554

            if needed_dtype is not None :
                # now figure out where all the corrupted values are, and shift them up to be positive
555
                needs_fix_mask = (scaled_data_copy < add_offset) & (scaled_data_copy != missing_val)
556
                # we are adding the 2's complement, but first we're scaling it appropriately
557
                scaled_data_copy[needs_fix_mask] += ((numpy.iinfo(numpy.uint16).max + 1.0) * scale_factor)
558
        """
559

560
        return scaled_data_copy
561
    
562
563
564
565
    # TODO, this hasn't been supported in other file types
    def close (self) :
        self._nc.close()
        self._nc = None
566
        self._var_map = None
567

568
    def get_variable_object(self, name):
569

570
        return self._var_map[name]
571
    
(no author)'s avatar
(no author) committed
572
    def missing_value(self, name):
573
        
574
575
576
577
578
579
580
581
582
583
584
        toReturn = None
        
        temp = self.attributeCache.get_variable_attribute(name, fillValConst1)
        if temp is not None :
            toReturn = temp
        else :
            temp = self.attributeCache.get_variable_attribute(name, fillValConst2)
            if temp is not None :
                toReturn = temp
        
        return toReturn
585

586
587
588
589
590
591
592
593
    def create_new_variable(self, variablename, missingvalue=None, data=None, variabletocopyattributesfrom=None):
        """
        create a new variable with the given name
        optionally set the missing value (fill value) and data to those given
        
        the created variable will be returned, or None if a variable could not
        be created
        """
594
595

        # TODO, this will not work with groups
596
        #self._nc.nc_redef() # TODO?
597
598
        
        # if the variable already exists, stop with a warning
Eva Schiffer's avatar
Eva Schiffer committed
599
        if variablename in self._nc.variables :
600
601
602
            LOG.warn("New variable name requested (" + variablename + ") is already present in file. " +
                     "Skipping generation of new variable.")
            return None
603
604
605
606
607
        # if we have no data we won't be able to determine the data type to create the variable
        if (data is None) or (len(data) <= 0) :
            LOG.warn("Data type for new variable (" + variablename + ") could not be determined. " +
                     "Skipping generation of new variable.")
            return None
Eva Schiffer's avatar
Eva Schiffer committed
608

609
        # TODO, the type managment here is going to cause problems with larger floats, review this
610
        dataType = None
611
612
        if numpy.issubdtype(data.dtype, int) :
            dataType = numpy.int
613
614
            #print("Picked INT")
        # TODO, at the moment the fill type is forcing me to use a double, when sometimes I want a float
615
616
        #elif numpy.issubdtype(data.dtype, numpy.float32) :
        #    dataType = numpy.float
617
        #    print("Picked FLOAT")
618
619
        elif numpy.issubdtype(data.dtype, float) :
            dataType = numpy.float64
620
621
            #print("Picked DOUBLE")
        # what do we do if it's some other type?
622
623
        else :
            dataType = data.dtype
624
625
626
627
628
        
        # create and set all the dimensions
        dimensions = [ ]
        dimensionNum = 0
        for dimSize in data.shape :
629
630
631
            tempName = variablename + '-index' + str(dimensionNum)
            self._nc.createDimension(tempName, dimSize)
            dimensions.append(tempName)
632
633
634
            dimensionNum = dimensionNum + 1
        
        # create the new variable
635
636
637
        #print('variable name: ' + variablename)
        #print('data type:     ' + str(dataType))
        #print('dimensions:    ' + str(dimensions))
638
        # if a missing value was given, use that
639
640
641
642
        if missingvalue is None :
            newVariable = self._nc.createVariable(variablename, dataType, tuple(dimensions))
        else :
            newVariable = self._nc.createVariable(variablename, dataType, tuple(dimensions), fill_value=missingvalue, )
643
644
645
        
        # if we have a variable to copy attributes from, do so
        if variabletocopyattributesfrom is not None :
646
647
            attributes = self.get_variable_attributes(variabletocopyattributesfrom, caseInsensitive=False)

Eva Schiffer's avatar
Eva Schiffer committed
648
            for attribute in attributes :
649
650
                if attribute.lower() != "_fillvalue" :
                    setattr(newVariable, attribute, attributes[attribute])
651

652
        #self._nc.nc_enddef() # TODO?
653

654
655
        # if data was given, use that
        if data is not None :
656
657

            newVariable[:] = data
658

659
        return newVariable
660

661
    def add_attribute_data_to_variable(self, variableName, newAttributeName, newAttributeValue, variableObject=None,) :
662
663
664
665
        """
        if the attribute exists for the given variable, set it to the new value
        if the attribute does not exist for the given variable, create it and set it to the new value
        """
666
667
        # TODO, this will not work with groups

668
669
        if variableObject is None :
            variableObject = self.get_variable_object(variableName)
670
        
671
        #self._nc.nc_redef() # TODO?
672
673
674

        setattr(variableObject, newAttributeName, newAttributeValue)

675
        #self._nc.nc_enddef() # TODO?
676

677
678
679
        # TODO, this will cause our attribute cache to be wrong!
        # TODO, for now, brute force clear the cache
        self.attributeCache = CaseInsensitiveAttributeCache(self)
680
681
        
        return
682
    
683
    def get_variable_attributes (self, variableName, caseInsensitive=True) :
684
685
686
687
        """
        returns all the attributes associated with a variable name
        """
        
688
689
690
691
692
        toReturn = None
        
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attributes(variableName)
        else :
693
694
695
696
697
            toReturn = { }
            tempVarObj   = self.get_variable_object(variableName)
            tempAttrKeys = tempVarObj.ncattrs()
            for attrKey in tempAttrKeys :
                toReturn[attrKey] = getattr(tempVarObj, attrKey)
698
699
        
        return toReturn
700
    
701
    def get_attribute(self, variableName, attributeName, caseInsensitive=True) :
702
703
704
705
706
        """
        returns the value of the attribute if it is available for this variable, or None
        """
        toReturn = None
        
707
708
709
710
711
712
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attribute(variableName, attributeName)
        else :
            temp_attributes = self.get_variable_attributes(variableName, caseInsensitive=False)
            
            if attributeName in temp_attributes :
713
                toReturn = getattr(self.get_variable_object, attributeName)
714
715
716
717
718
719
720
721
722
        
        return toReturn
    
    def get_global_attributes(self, caseInsensitive=True) :
        """
        get a list of all the global attributes for this file or None
        """
        
        toReturn = None
723
        
724
        if caseInsensitive :
725
            toReturn = self.attributeCache.get_global_attributes()
726
        else :
727
728
729
730
            toReturn = { }
            tempAttrKeys = self._nc.ncattrs()
            for attrKey in tempAttrKeys :
                toReturn[attrKey] = getattr(self._nc, attrKey)
731

732
        return toReturn
733
    
734
    def get_global_attribute(self, attributeName, caseInsensitive=True) :
735
736
737
738
739
740
        """
        returns the value of a global attribute if it is available or None
        """
        
        toReturn = None
        
741
742
743
        if caseInsensitive :
            toReturn = self.attributeCache.get_global_attribute(attributeName)
        else :
744
            if attributeName in self._nc.ncattrs() :
745
                toReturn = getattr(self._nc, attributeName)
746
747
        
        return toReturn
748
749
750
751
752
    
    def is_loadable_type (self, name) :
        """
        check to see if the indicated variable is a type that can be loaded
        """
753
754

        return True
755

(no author)'s avatar
(no author) committed
756
757
758
nc4 = nc
cdf = nc

759
760
# TODO remove
#FIXME_IDPS = [ '/All_Data/CrIS-SDR_All/ES' + ri + band for ri in ['Real','Imaginary'] for band in ['LW','MW','SW'] ] 
761

(no author)'s avatar
(no author) committed
762
class h5(object):
763
764
765
766
    """wrapper for HDF5 datasets
    """
    _h5 = None
    
767
    def __init__(self, filename, allowWrite=False):
768
769
        self.attributeCache = CaseInsensitiveAttributeCache(self)
        
770
771
772
        mode = 'r'
        if allowWrite :
            mode = 'r+'
(no author)'s avatar
   
(no author) committed
773
774
775
        if h5py is None:
            LOG.error('h5py module is not installed and is needed in order to read h5 files')
            assert(h5py is not None)
776
        self._h5 = h5py.File(filename, mode)
777
778
    
    def __call__(self):
779
780
781
782
        
        variableList = [ ]
        def testFn (name, obj) :
            #print ('checking name: ' + name)
783
            #print ('object: ' + str(obj))
784
785
786
787
            
            if isinstance(obj, h5py.Dataset) :
                try :
                    tempType = obj.dtype # this is required to provoke a type error for closed data sets
788
                    
789
                    #LOG.debug ('type: ' + str(tempType))
790
791
792
793
794
795
796
797
798
799
                    variableList.append(name)
                except TypeError :
                    LOG.debug('TypeError prevents the use of variable ' + name
                              + '. This variable will be ignored')
        
        self._h5.visititems(testFn)
        
        LOG.debug('variables from visiting h5 file structure: ' + str(variableList))
        
        return(variableList)
800
801
802
803
804
    
    @staticmethod
    def trav(h5,pth): 
        return reduce( lambda x,a: x[a] if a else x, pth.split('/'), h5)
        
805
806
807
808
809
    # this returns a numpy array with a copy of the full, scaled
    # data for this variable, if the data type must be changed to allow
    # for scaling it will be (so the return type may not reflect the
    # type found in the original file)
    def __getitem__(self, name):
810
        
811
812
813
814
815
816
817
818
        # defaults
        scale_factor = 1.0
        add_offset = 0.0
        
        # get the variable object and use it to
        # get our raw data and scaling info
        variable_object = self.get_variable_object(name)
        raw_data_copy = variable_object[:]
819
820
821
822

        # pick a data type to use internally
        data_type = _get_data_uptype(raw_data_copy.dtype)

823
824
825
826
        #print ('*************************')
        #print (dir (variable_object.id)) # TODO, is there a way to get the scale and offset through this?
        #print ('*************************')
        
827
        # load the scale factor and add offset
828
        temp = self.attributeCache.get_variable_attributes(name)
Eva Schiffer's avatar
Eva Schiffer committed
829
        if SCALE_FACTOR_STR in temp :
830
            scale_factor = temp[SCALE_FACTOR_STR]
Eva Schiffer's avatar
Eva Schiffer committed
831
        if ADD_OFFSET_STR in temp :
832
            add_offset = temp[ADD_OFFSET_STR]
833
834
835
836
837
838
        # todo, does cdf have an equivalent of endaccess to close the variable?
        
        # don't do lots of work if we don't need to scale things
        if (scale_factor == 1.0) and (add_offset == 0.0) :
            return raw_data_copy
        
839
840
        # get information about where the data is the missing value
        missing_val = self.missing_value(name)
841
        missing_mask = numpy.zeros(raw_data_copy.shape, dtype=numpy.bool)
842
843
        if missing_val is not None:
            missing_mask[raw_data_copy == missing_val] = True
844
        
845
        # create the scaled version of the data
846
        scaled_data_copy = numpy.array(raw_data_copy, dtype=data_type)
847
        scaled_data_copy[~missing_mask] = (scaled_data_copy[~missing_mask] * scale_factor) + add_offset #TODO, type truncation issues?
848
849
850
851
        
        return scaled_data_copy
    
    def get_variable_object(self,name):
852
853
854
        return h5.trav(self._h5, name)
    
    def missing_value(self, name):
855
856
857
858
859
860
861
        
        toReturn = None
        
        # get the missing value if it has been set
        variableObject = self.get_variable_object(name)
        pListObj = variableObject.id.get_create_plist()
        fillValueStatus = pListObj.fill_value_defined()
Eva Schiffer's avatar
Eva Schiffer committed
862
        if (h5d.FILL_VALUE_DEFAULT == fillValueStatus) or (h5d.FILL_VALUE_USER_DEFINED == fillValueStatus) :
863
            temp = numpy.array((1), dtype=variableObject.dtype)
864
865
866
867
            pListObj.get_fill_value(temp)
            toReturn = temp
        
        return toReturn
868
869
870
871
872
873
874
875
876
    
    def create_new_variable(self, variablename, missingvalue=None, data=None, variabletocopyattributesfrom=None):
        """
        create a new variable with the given name
        optionally set the missing value (fill value) and data to those given
        
        the created variable will be returned, or None if a variable could not
        be created
        """
877
        
878
        raise IOUnimplimentedError('Unable to create variable in hdf 5 file, this functionality is not yet available.')
879
880
881
882
883
884
885
886
        
        return None
    
    def add_attribute_data_to_variable(self, variableName, newAttributeName, newAttributeValue) :
        """
        if the attribute exists for the given variable, set it to the new value
        if the attribute does not exist for the given variable, create it and set it to the new value
        """
887
888
        
        raise IOUnimplimentedError('Unable to add attribute to hdf 5 file, this functionality is not yet available.')
889
890
        
        return
891
    
892
    def get_variable_attributes (self, variableName, caseInsensitive=True) :
893
894
895
896
        """
        returns all the attributes associated with a variable name
        """
        
897
898
899
900
901
902
903
904
        toReturn = None
        
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attributes(variableName)
        else :
            toReturn = self.get_variable_object(variableName).attrs
        
        return toReturn
905
    
906
    def get_attribute(self, variableName, attributeName, caseInsensitive=True) :
907
908
909
910
911
        """
        returns the value of the attribute if it is available for this variable, or None
        """
        toReturn = None
        
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attribute(variableName, attributeName)
        else :
            temp_attrs = self.get_variable_attributes(variableName, caseInsensitive=False)
            
            if (attributeName in temp_attrs) :
                toReturn = temp_attrs[attributeName]
        
        return toReturn
    
    def get_global_attributes(self, caseInsensitive=True) :
        """
        get a list of all the global attributes for this file or None
        """
        
        toReturn = None
928
        
929
        if caseInsensitive :
930
            toReturn = self.attributeCache.get_global_attributes()
931
932
        else :
            toReturn = self._h5.attrs
933
934
        
        return toReturn
(no author)'s avatar
(no author) committed
935
    
936
    def get_global_attribute(self, attributeName, caseInsensitive=True) :
(no author)'s avatar
(no author) committed
937
938
939
940
941
942
        """
        returns the value of a global attribute if it is available or None
        """
        
        toReturn = None
        
943
944
945
946
947
        if caseInsensitive :
            toReturn = self.attributeCache.get_global_attribute(attributeName)
        else :
            if attributeName in self._h5.attrs :
                toReturn = self._h5.attrs[attributeName]
(no author)'s avatar
(no author) committed
948
949
        
        return toReturn
950
951
952
953
954
955
956
957
    
    def is_loadable_type (self, name) :
        """
        check to see if the indicated variable is a type that can be loaded
        """
        
        # TODO, are there any bad types for these files?
        return True
(no author)'s avatar
(no author) committed
958

(no author)'s avatar
(no author) committed
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

class aeri(object):
    """wrapper for AERI RNC/SUM/CXS/etc datasets
    """
    _dmv = None
    _vectors = { }
    _scalars = { }
    
    @staticmethod
    def _meta_mapping(fp):
        ids = fp.metaIDs()
        names = [fp.queryMetaDescString(1, id_, fp.SHORTNAME) for id_ in ids]
        assert len(ids) == len(names)
        return (dict((n, i) for n, i in zip(names, ids)))
    
    def _inventory(self):
        fp = self._dmv
        assert(fp is not None)
        # get list of vectors and scalars
        self._vectors = dict( (fp.queryVectorDescString(n,fp.SHORTNAME), n) for n in fp.vectorIDs() )
        self._scalars = self._meta_mapping(fp)

    def __init__(self, filename, allowWrite=False):
        assert(allowWrite==False)
        if dmvlib is None:
            LOG.error('cannot open AERI files without dmv module being available')
            return
        self._dmv = dmvlib.dmv()
        rc = self._dmv.openFile(filename)
        if rc!=0:
            LOG.error("unable to open file, rc=%d" % rc)
            self._dmv = None        
        else:
            self._inventory()
    
    def __call__(self):
Eva Schiffer's avatar
Eva Schiffer committed
995
        return list(self._vectors) + list(self._scalars)
(no author)'s avatar
(no author) committed
996
997
998
999
1000
        
    def __getitem__(self, name):
        fp = self._dmv
        assert(fp is not None)
        if 'DMV_RECORDS' in os.environ:
For faster browsing, not all history is shown. View entire blame