io.py 44.3 KB
Newer Older
(no author)'s avatar
(no author) committed
1
2
3
4
5
6
7
8
9
#!/usr/bin/env python
# encoding: utf-8
"""
I/O routines supporting reading a number of file formats.

Created by rayg Apr 2009.
Copyright (c) 2009 University of Wisconsin SSEC. All rights reserved.
"""

10
import os, logging
(no author)'s avatar
   
(no author) committed
11
12
13
import numpy as np

LOG = logging.getLogger(__name__)
(no author)'s avatar
(no author) committed
14

(no author)'s avatar
   
(no author) committed
15
16
17
18
19
20
21
22
23
try:
    import pyhdf
    from pyhdf.SD import SD,SDC, SDS, HDF4Error
except:
    LOG.info('no pyhdf module available for HDF4')
    pyhdf = None
    SD = SDC = SDS = object
    HDF4Error = EnvironmentError
    
24
25
try:
    import h5py
26
    from h5py import h5d
27
except ImportError:
(no author)'s avatar
   
(no author) committed
28
29
    LOG.info('no h5py module available for reading HDF5')
    h5py = None
(no author)'s avatar
(no author) committed
30

(no author)'s avatar
   
(no author) committed
31
32
33
34
35
36
37
38
39
try:    
    import pycdf
    from pycdf import CDF, NC, strerror
except:
    LOG.info('no pycdf module available')
    pycdf = None
    CDF = NC = object
    def strerror(*args):
        return 'no pycdf module installed'
(no author)'s avatar
(no author) committed
40

(no author)'s avatar
(no author) committed
41
42
43
44
45
46
47
try:
    import dmv as dmvlib
    LOG.info('loaded dmv module for AERI data file access')
except ImportError:
    LOG.info('no AERI dmv data file format module')
    dmvlib = None

(no author)'s avatar
   
(no author) committed
48
49
50
51
52
53
54
try:
    import adl_blob
    LOG.info('adl_blob module found for JPSS ADL data file access')
except ImportError:
    LOG.info('no adl_blob format handler available')
    adl_blob = None

55
56
57
58
59
60
61
try :
    from osgeo import gdal
    LOG.info('loading osgeo module for GeoTIFF data file access')
except :
    LOG.info('no osgeo available for reading GeoTIFF data files')
    gdal = None

62
UNITS_CONSTANT = "units"
(no author)'s avatar
(no author) committed
63

64
65
66
fillValConst1 = '_FillValue'
fillValConst2 = 'missing_value'

67
68
69
70
ADD_OFFSET_STR   = 'add_offset'
SCALE_FACTOR_STR = 'scale_factor'
SCALE_METHOD_STR = 'scaling_method'

71
72
73
74
75
76
77
78
79
80
81
class IOUnimplimentedError(Exception):
    """
    The exception raised when a requested io operation is not yet available.
    
        msg  -- explanation of the problem
    """
    def __init__(self, msg):
        self.msg = msg
    def __str__(self):
        return self.msg

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
class CaseInsensitiveAttributeCache (object) :
    """
    A cache of attributes for a single file and all of it's variables.
    This cache is considered uncased, it will store all attributes it caches
    in lower case and will lower case any strings it is asked to search for
    in the cache.
    When variable or global attribute sets are not yet loaded and something
    from that part of the file is requested the cache will transparently load
    attributes from the file behind the scenes and build the cache for that
    part of the file.
    """
    
    def __init__(self, fileObject) :
        """
        set up the empty cache and hang on to the file object we'll be caching
        """
        
        self.fileToCache             = fileObject
        self.globalAttributesLower   = None
        self.variableAttributesLower = { }
    
    def _load_global_attributes_if_needed (self) :
        """
        load up the global attributes if they need to be cached
        """
        
        # load the attributes from the file if they aren't cached
        if self.globalAttributesLower is None :
            LOG.debug ("Loading file global attributes into case-insensitive cache.")
            tempAttrs                  = self.fileToCache.get_global_attributes(caseInsensitive=False)
            self.globalAttributesLower = dict((k.lower(), v) for k, v in tempAttrs.items())
    
    def _load_variable_attributes_if_needed (self, variableName) :
        """
        load up the variable attributes if they need to be cached
        """
        
        # make a lower cased version of the variable name
        tempVariableName = variableName.lower()
        
        # load the variable's attributes from the file if they aren't cached
        if tempVariableName not in self.variableAttributesLower.keys() :
            LOG.debug ("Loading attributes for variable \"" + variableName + "\" into case-insensitive cache.")
            tempAttrs = self.fileToCache.get_variable_attributes(variableName, caseInsensitive=False)
            # now if there are any attributes, make a case insensitive version
            self.variableAttributesLower[tempVariableName] = dict((k.lower(), v) for k, v in tempAttrs.items())
    
    def get_variable_attribute (self, variableName, attributeName) :
        """
        get the specified attribute for the specified variable,
        if this variable's attributes have not yet been loaded
        they will be loaded and cached
        """
        
        self._load_variable_attributes_if_needed(variableName)
        
        toReturn = None
        tempVariableName  =  variableName.lower()
        tempAttributeName = attributeName.lower()
        if (tempVariableName in self.variableAttributesLower) and (tempAttributeName in self.variableAttributesLower[tempVariableName]) :
            toReturn = self.variableAttributesLower[tempVariableName][tempAttributeName]
        else:
            LOG.debug ("Attribute \"" + attributeName + "\" was not present for variable \"" + variableName + "\".")
        
        return toReturn
    
    def get_variable_attributes (self, variableName) :
        """
        get the variable attributes for the variable name given
        """
        
        self._load_variable_attributes_if_needed(variableName)
        
        toReturn = self.variableAttributesLower[variableName.lower()] if (variableName.lower() in self.variableAttributesLower) else None
        
        return toReturn
    
    def get_global_attribute (self, attributeName) :
        """
        get a global attribute with the given name
        """
        
        self._load_global_attributes_if_needed()
        
        toReturn = self.globalAttributesLower[attributeName.lower()] if (attributeName.lower() in self.globalAttributesLower) else None
        
        return toReturn
    
    def get_global_attributes (self) :
        """
        get the global attributes,
        """
        
        self._load_global_attributes_if_needed()
        
        toReturn = self.globalAttributesLower
        
        return toReturn

class hdf (object):
(no author)'s avatar
(no author) committed
182
183
184
185
186
    """wrapper for HDF4 dataset for comparison
    __call__ yields sequence of variable names
    __getitem__ returns individual variables ready for slicing to numpy arrays
    """
    
187
188
    _hdf = None
    
189
    def __init__(self, filename, allowWrite=False):
190
        
(no author)'s avatar
   
(no author) committed
191
192
193
        if pyhdf is None:
            LOG.error('pyhdf is not installed and is needed in order to read hdf4 files')
            assert(pyhdf is not None)
194
195
196
        mode = SDC.READ
        if allowWrite:
            mode = mode | SDC.WRITE
197
198
199
        
        self._hdf = SD(filename, mode)
        self.attributeCache = CaseInsensitiveAttributeCache(self)
(no author)'s avatar
(no author) committed
200
201
202

    def __call__(self):
        "yield names of variables to be compared"
203
        return self._hdf.datasets().keys()
(no author)'s avatar
(no author) committed
204
    
205
206
207
208
    # this returns a numpy array with a copy of the full, scaled
    # data for this variable, if the data type must be changed to allow
    # for scaling it will be (so the return type may not reflect the
    # type found in the original file)
(no author)'s avatar
(no author) committed
209
    def __getitem__(self, name):
210
211
212
        # defaults
        scale_factor = 1.0
        add_offset = 0.0
213
        data_type = None 
(no author)'s avatar
(no author) committed
214
        scaling_method = None
215
216
217
218
219
220
221
222
223
        
        # get the variable object and use it to
        # get our raw data and scaling info
        variable_object = self.get_variable_object(name)
        raw_data_copy = variable_object[:]
        try :
            # TODO, this currently won't work with geocat data, work around it for now
            scale_factor, scale_factor_error, add_offset, add_offset_error, data_type = SDS.getcal(variable_object)
        except HDF4Error:
224
225
226
227
            # load just the scale factor and add offset information by hand
            temp = self.attributeCache.get_variable_attributes(name)
            if ADD_OFFSET_STR in temp.keys() :
                add_offset = temp[ADD_OFFSET_STR]
228
                data_type = np.dtype(type(add_offset))
229
230
            if SCALE_FACTOR_STR in temp.keys() :
                scale_factor = temp[SCALE_FACTOR_STR]
231
                data_type = np.dtype(type(scale_factor))
232
233
            if SCALE_METHOD_STR in temp.keys() :
                scaling_method = temp[SCALE_METHOD_STR]
234
        SDS.endaccess(variable_object)
(no author)'s avatar
(no author) committed
235
        
236
237
238
239
        # don't do lots of work if we don't need to scale things
        if (scale_factor == 1.0) and (add_offset == 0.0) :
            return raw_data_copy
        
240
241
242
243
244
245
246
247
248
249
        # at the moment geocat has several scaling methods that don't match the normal standards for hdf
        """
        please see constant.f90 for a more up to date version of this information:
            INTEGER(kind=int1) :: NO_SCALE              ! 0
            INTEGER(kind=int1) :: LINEAR_SCALE          ! 1
            INTEGER(kind=int1) :: LOG_SCALE             ! 2
            INTEGER(kind=int1) :: SQRT_SCALE            ! 3 
        """
        if (scaling_method == 0) :
            return raw_data_copy
250
        if not ((scaling_method is None) or (int(scaling_method) <= 1)) :
251
252
            LOG.warn ('Scaling method of \"' + str(scaling_method) + '\" will be ignored in favor of hdf standard method. '
                      + 'This may cause problems with data consistency')
253
        
254
255
256
        # if we don't have a data type something strange has gone wrong
        assert(not (data_type is None))
        
257
258
        # get information about where the data is the missing value
        missing_val = self.missing_value(name)
259
260
        missing_mask = np.zeros(raw_data_copy.shape, dtype=np.bool)
        missing_mask[raw_data_copy == missing_val] = True
261
        
262
        # create the scaled version of the data
263
        scaled_data_copy                = np.array(raw_data_copy, dtype=data_type)
264
        scaled_data_copy[~missing_mask] = (scaled_data_copy[~missing_mask] * scale_factor) + add_offset #TODO, type truncation issues?
265
266
267
268
        
        return scaled_data_copy 
    
    def get_variable_object(self, name):
269
        return self._hdf.select(name)
270
    
(no author)'s avatar
(no author) committed
271
    def missing_value(self, name):
272
        
273
        return self.get_attribute(name, fillValConst1)
274
275
276
277
278
279
280
281
282
    
    def create_new_variable(self, variablename, missingvalue=None, data=None, variabletocopyattributesfrom=None):
        """
        create a new variable with the given name
        optionally set the missing value (fill value) and data to those given
        
        the created variable will be returned, or None if a variable could not
        be created
        """
(no author)'s avatar
(no author) committed
283
        
284
        raise IOUnimplimentedError('Unable to create variable in hdf file, this functionality is not yet available.')
285
286
287
288
289
290
291
292
        
        return None
    
    def add_attribute_data_to_variable(self, variableName, newAttributeName, newAttributeValue) :
        """
        if the attribute exists for the given variable, set it to the new value
        if the attribute does not exist for the given variable, create it and set it to the new value
        """
293
294
        
        raise IOUnimplimentedError('Unable add attribute to hdf file, this functionality is not yet available.')
295
296
        
        return
297
    
298
    def get_variable_attributes (self, variableName, caseInsensitive=True) :
299
300
301
302
        """
        returns all the attributes associated with a variable name
        """
        
303
304
305
306
307
308
309
        toReturn = None
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attributes(variableName)
        else :
            toReturn = self.get_variable_object(variableName).attributes()
        
        return toReturn
310
    
311
    def get_attribute(self, variableName, attributeName, caseInsensitive=True) :
312
313
314
315
316
        """
        returns the value of the attribute if it is available for this variable, or None
        """
        toReturn = None
        
317
318
319
320
321
322
323
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attribute(variableName, attributeName)
        else :
            temp_attributes = self.get_variable_attributes(variableName, caseInsensitive=False)
            
            if attributeName in temp_attributes :
                toReturn = temp_attributes[attributeName]
324
325
        
        return toReturn
(no author)'s avatar
(no author) committed
326
    
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    def get_global_attributes(self, caseInsensitive=True) :
        """
        get a list of all the global attributes for this file or None
        """
        
        toReturn = None
        
        if caseInsensitive :
            self.attributeCache.get_global_attributes()
        else :
            toReturn = self._hdf.attributes()
        
        return toReturn
    
    def get_global_attribute(self, attributeName, caseInsensitive=True) :
(no author)'s avatar
(no author) committed
342
343
344
345
346
347
        """
        returns the value of a global attribute if it is available or None
        """
        
        toReturn = None
        
348
349
350
351
352
        if caseInsensitive :
            toReturn = self.attributeCache.get_global_attribute(attributeName)
        else :
            if attributeName in self._hdf.attributes() :
                toReturn = self._hdf.attributes()[attributeName]
(no author)'s avatar
(no author) committed
353
354
        
        return toReturn
(no author)'s avatar
(no author) committed
355

356
class nc (object):
(no author)'s avatar
(no author) committed
357
358
359
360
361
    """wrapper for NetCDF3/4/opendap dataset for comparison
    __call__ yields sequence of variable names
    __getitem__ returns individual variables ready for slicing to numpy arrays
    """
    
362
363
    _nc = None
    
364
365
    def __init__(self, filename, allowWrite=False):
        
(no author)'s avatar
   
(no author) committed
366
367
368
369
        if pycdf is None:
            LOG.error('pycdf is not installed and is needed in order to read NetCDF files')
            assert(pycdf is not None)
        
370
371
372
373
        mode = NC.NOWRITE
        if allowWrite :
            mode = NC.WRITE
        
374
375
        self._nc = CDF(filename, mode)
        self.attributeCache = CaseInsensitiveAttributeCache(self)
376

(no author)'s avatar
(no author) committed
377
378
    def __call__(self):
        "yield names of variables to be compared"
379
        return self._nc.variables().keys()
(no author)'s avatar
(no author) committed
380
    
381
382
383
384
    # this returns a numpy array with a copy of the full, scaled
    # data for this variable, if the data type must be changed to allow
    # for scaling it will be (so the return type may not reflect the
    # type found in the original file)
(no author)'s avatar
(no author) committed
385
    def __getitem__(self, name):
386
387
388
        
        #print ("*** opening variable: " + name)
        
389
390
391
392
393
394
395
396
397
398
        # defaults
        scale_factor = 1.0
        add_offset = 0.0
        data_type = np.float32 # TODO temporary
        
        # get the variable object and use it to
        # get our raw data and scaling info
        variable_object = self.get_variable_object(name)
        raw_data_copy = variable_object[:]
        # load the scale factor and add offset
399
400
401
402
403
404
        
        temp = self.attributeCache.get_variable_attributes(name)
        if SCALE_FACTOR_STR in temp.keys() :
            scale_factor = temp[SCALE_FACTOR_STR]
        if ADD_OFFSET_STR in temp.keys() :
            add_offset = temp[ADD_OFFSET_STR]
405
406
407
408
409
        # todo, does cdf have an equivalent of endaccess to close the variable?
        
        # don't do lots of work if we don't need to scale things
        if (scale_factor == 1.0) and (add_offset == 0.0) :
            return raw_data_copy
(no author)'s avatar
(no author) committed
410
        
411
412
        # get information about where the data is the missing value
        missing_val = self.missing_value(name)
413
414
        missing_mask = np.zeros(raw_data_copy.shape, dtype=np.bool)
        missing_mask[raw_data_copy == missing_val] = True
415
        
416
417
        # create the scaled version of the data
        scaled_data_copy = np.array(raw_data_copy, dtype=data_type)
418
        scaled_data_copy[~missing_mask] = (scaled_data_copy[~missing_mask] * scale_factor) + add_offset #TODO, type truncation issues?
419
420
421
        
        return scaled_data_copy 
    
422
423
424
425
426
    # TODO, this hasn't been supported in other file types
    def close (self) :
        self._nc.close()
        self._nc = None
    
427
    def get_variable_object(self, name):
428
        return self._nc.var(name)
429
    
(no author)'s avatar
(no author) committed
430
    def missing_value(self, name):
431
        
432
433
434
435
436
437
438
439
440
441
442
443
        toReturn = None
        
        temp = self.attributeCache.get_variable_attribute(name, fillValConst1)
        if temp is not None :
            toReturn = temp
        else :
            temp = self.attributeCache.get_variable_attribute(name, fillValConst2)
            if temp is not None :
                toReturn = temp
        
        """ todo, why was the getattr method being used with 3 params? I can't find this documented anywhere...
        variable_object = self._nc.var(name)
444
445
        
        to_return = None
446
        if hasattr(variable_object, fillValConst1) \
447
           or \
448
449
450
           hasattr(variable_object, fillValConst2) :
            to_return = getattr(variable_object, fillValConst1,
                                getattr(variable_object, fillValConst2, None))
451
        """
452
        
453
        return toReturn
454
455
456
457
458
459
460
461
462
463
    
    def create_new_variable(self, variablename, missingvalue=None, data=None, variabletocopyattributesfrom=None):
        """
        create a new variable with the given name
        optionally set the missing value (fill value) and data to those given
        
        the created variable will be returned, or None if a variable could not
        be created
        """
        
464
        self._nc.redef()
465
466
        
        # if the variable already exists, stop with a warning
467
        if variablename in self._nc.variables().keys() :
468
469
470
            LOG.warn("New variable name requested (" + variablename + ") is already present in file. " +
                     "Skipping generation of new variable.")
            return None
471
472
473
474
475
        # if we have no data we won't be able to determine the data type to create the variable
        if (data is None) or (len(data) <= 0) :
            LOG.warn("Data type for new variable (" + variablename + ") could not be determined. " +
                     "Skipping generation of new variable.")
            return None
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        
        dataType = None
        if np.issubdtype(data.dtype, int) :
            dataType = NC.INT
            #print("Picked INT")
        # TODO, at the moment the fill type is forcing me to use a double, when sometimes I want a float
        #elif np.issubdtype(data.dtype, np.float32) :
        #    dataType = NC.FLOAT
        #    print("Picked FLOAT")
        elif np.issubdtype(data.dtype, float) :
            dataType = NC.DOUBLE
            #print("Picked DOUBLE")
        # what do we do if it's some other type?
        
        # create and set all the dimensions
        dimensions = [ ]
        dimensionNum = 0
        for dimSize in data.shape :
494
            dimensions.append(self._nc.def_dim(variablename + '-index' + str(dimensionNum), dimSize))
495
496
497
            dimensionNum = dimensionNum + 1
        
        # create the new variable
498
499
500
        #print('variable name: ' + variablename)
        #print('data type:     ' + str(dataType))
        #print('dimensions:    ' + str(dimensions))
501
        newVariable = self._nc.def_var(variablename, dataType, tuple(dimensions))
502
503
504
505
506
507
508
509
510
511
512
513
        
        # if a missing value was given, use that
        if missingvalue is not None :
            newVariable._FillValue = missingvalue
        
        # if we have a variable to copy attributes from, do so
        if variabletocopyattributesfrom is not None :
            tocopyfrom = self.get_variable_object(variabletocopyattributesfrom)
            attributes = tocopyfrom.attributes()
            for attribute in attributes.keys() :
                newVariable.__setattr__(attribute, attributes[attribute])
        
514
        self._nc.enddef()
515
516
517
518
519
520
        
        # if data was given, use that
        if data is not None :
            newVariable.put(data.tolist()) 
        
        return newVariable
521
522
523
524
525
526
527
528
    
    def add_attribute_data_to_variable(self, variableName, newAttributeName, newAttributeValue) :
        """
        if the attribute exists for the given variable, set it to the new value
        if the attribute does not exist for the given variable, create it and set it to the new value
        """
        variableObject = self.get_variable_object(variableName)
        
529
        self._nc.redef()
530
531
        
        variableObject.__setattr__(newAttributeName, newAttributeValue)
532
533
534
        # TODO, this will cause our attribute cache to be wrong!
        # TODO, for now, brute force clear the cache
        self.attributeCache = CaseInsensitiveAttributeCache(self)
535
        
536
        self._nc.enddef()
537
538
        
        return
539
    
540
    def get_variable_attributes (self, variableName, caseInsensitive=True) :
541
542
543
544
        """
        returns all the attributes associated with a variable name
        """
        
545
546
547
548
549
550
551
552
        toReturn = None
        
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attributes(variableName)
        else :
            toReturn = self.get_variable_object(variableName).attributes()
        
        return toReturn
553
    
554
    def get_attribute(self, variableName, attributeName, caseInsensitive=True) :
555
556
557
558
559
        """
        returns the value of the attribute if it is available for this variable, or None
        """
        toReturn = None
        
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attribute(variableName, attributeName)
        else :
            temp_attributes = self.get_variable_attributes(variableName, caseInsensitive=False)
            
            if attributeName in temp_attributes :
                toReturn = temp_attributes[attributeName]
        
        return toReturn
    
    def get_global_attributes(self, caseInsensitive=True) :
        """
        get a list of all the global attributes for this file or None
        """
        
        toReturn = None
576
        
577
578
579
580
        if caseInsensitive :
            self.attributeCache.get_global_attributes()
        else :
            toReturn = self._nc.attributes()
581
582
        
        return toReturn
583
    
584
    def get_global_attribute(self, attributeName, caseInsensitive=True) :
585
586
587
588
589
590
        """
        returns the value of a global attribute if it is available or None
        """
        
        toReturn = None
        
591
592
593
594
595
        if caseInsensitive :
            toReturn = self.attributeCache.get_global_attribute(attributeName)
        else :
            if attributeName in self._nc.attributes() :
                toReturn = self._nc.attributes()[attributeName]
596
597
        
        return toReturn
598

(no author)'s avatar
(no author) committed
599
600
601
nc4 = nc
cdf = nc

602
603
# TODO remove
#FIXME_IDPS = [ '/All_Data/CrIS-SDR_All/ES' + ri + band for ri in ['Real','Imaginary'] for band in ['LW','MW','SW'] ] 
604

(no author)'s avatar
(no author) committed
605
class h5(object):
606
607
608
609
    """wrapper for HDF5 datasets
    """
    _h5 = None
    
610
    def __init__(self, filename, allowWrite=False):
611
612
        self.attributeCache = CaseInsensitiveAttributeCache(self)
        
613
614
615
        mode = 'r'
        if allowWrite :
            mode = 'r+'
(no author)'s avatar
   
(no author) committed
616
617
618
        if h5py is None:
            LOG.error('h5py module is not installed and is needed in order to read h5 files')
            assert(h5py is not None)
619
        self._h5 = h5py.File(filename, mode)
620
621
    
    def __call__(self):
622
623
624
625
        
        variableList = [ ]
        def testFn (name, obj) :
            #print ('checking name: ' + name)
626
            #print ('object: ' + str(obj))
627
628
629
630
            
            if isinstance(obj, h5py.Dataset) :
                try :
                    tempType = obj.dtype # this is required to provoke a type error for closed data sets
631
                    
632
                    #LOG.debug ('type: ' + str(tempType))
633
634
635
636
637
638
639
640
641
642
                    variableList.append(name)
                except TypeError :
                    LOG.debug('TypeError prevents the use of variable ' + name
                              + '. This variable will be ignored')
        
        self._h5.visititems(testFn)
        
        LOG.debug('variables from visiting h5 file structure: ' + str(variableList))
        
        return(variableList)
643
644
645
646
647
    
    @staticmethod
    def trav(h5,pth): 
        return reduce( lambda x,a: x[a] if a else x, pth.split('/'), h5)
        
648
649
650
651
652
    # this returns a numpy array with a copy of the full, scaled
    # data for this variable, if the data type must be changed to allow
    # for scaling it will be (so the return type may not reflect the
    # type found in the original file)
    def __getitem__(self, name):
653
        
654
655
656
657
658
659
660
661
662
        # defaults
        scale_factor = 1.0
        add_offset = 0.0
        data_type = np.float32 # TODO temporary
        
        # get the variable object and use it to
        # get our raw data and scaling info
        variable_object = self.get_variable_object(name)
        raw_data_copy = variable_object[:]
663
664
665
666
667
        
        #print ('*************************')
        #print (dir (variable_object.id)) # TODO, is there a way to get the scale and offset through this?
        #print ('*************************')
        
668
        # load the scale factor and add offset
669
670
671
672
673
        temp = self.attributeCache.get_variable_attributes(name)
        if (SCALE_FACTOR_STR in temp.keys()) :
            scale_factor = temp[SCALE_FACTOR_STR]
        if (ADD_OFFSET_STR in temp.keys()) :
            add_offset = temp[ADD_OFFSET_STR]
674
675
676
677
678
679
        # todo, does cdf have an equivalent of endaccess to close the variable?
        
        # don't do lots of work if we don't need to scale things
        if (scale_factor == 1.0) and (add_offset == 0.0) :
            return raw_data_copy
        
680
681
        # get information about where the data is the missing value
        missing_val = self.missing_value(name)
682
683
        missing_mask = np.zeros(raw_data_copy.shape, dtype=np.bool)
        missing_mask[raw_data_copy == missing_val] = True
684
        
685
686
        # create the scaled version of the data
        scaled_data_copy = np.array(raw_data_copy, dtype=data_type)
687
        scaled_data_copy[~missing_mask] = (scaled_data_copy[~missing_mask] * scale_factor) + add_offset #TODO, type truncation issues?
688
689
690
691
        
        return scaled_data_copy
    
    def get_variable_object(self,name):
692
693
694
        return h5.trav(self._h5, name)
    
    def missing_value(self, name):
695
696
697
698
699
700
701
702
703
704
705
706
707
        
        toReturn = None
        
        # get the missing value if it has been set
        variableObject = self.get_variable_object(name)
        pListObj = variableObject.id.get_create_plist()
        fillValueStatus = pListObj.fill_value_defined()
        if (h5d.FILL_VALUE_DEFAULT is fillValueStatus) or (h5d.FILL_VALUE_USER_DEFINED is fillValueStatus) :
            temp = np.array((1), dtype=variableObject.dtype)
            pListObj.get_fill_value(temp)
            toReturn = temp
        
        return toReturn
708
709
710
711
712
713
714
715
716
    
    def create_new_variable(self, variablename, missingvalue=None, data=None, variabletocopyattributesfrom=None):
        """
        create a new variable with the given name
        optionally set the missing value (fill value) and data to those given
        
        the created variable will be returned, or None if a variable could not
        be created
        """
717
        
718
        raise IOUnimplimentedError('Unable to create variable in hdf 5 file, this functionality is not yet available.')
719
720
721
722
723
724
725
726
        
        return None
    
    def add_attribute_data_to_variable(self, variableName, newAttributeName, newAttributeValue) :
        """
        if the attribute exists for the given variable, set it to the new value
        if the attribute does not exist for the given variable, create it and set it to the new value
        """
727
728
        
        raise IOUnimplimentedError('Unable to add attribute to hdf 5 file, this functionality is not yet available.')
729
730
        
        return
731
    
732
    def get_variable_attributes (self, variableName, caseInsensitive=True) :
733
734
735
736
        """
        returns all the attributes associated with a variable name
        """
        
737
738
739
740
741
742
743
744
        toReturn = None
        
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attributes(variableName)
        else :
            toReturn = self.get_variable_object(variableName).attrs
        
        return toReturn
745
    
746
    def get_attribute(self, variableName, attributeName, caseInsensitive=True) :
747
748
749
750
751
        """
        returns the value of the attribute if it is available for this variable, or None
        """
        toReturn = None
        
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
        if caseInsensitive :
            toReturn = self.attributeCache.get_variable_attribute(variableName, attributeName)
        else :
            temp_attrs = self.get_variable_attributes(variableName, caseInsensitive=False)
            
            if (attributeName in temp_attrs) :
                toReturn = temp_attrs[attributeName]
        
        return toReturn
    
    def get_global_attributes(self, caseInsensitive=True) :
        """
        get a list of all the global attributes for this file or None
        """
        
        toReturn = None
768
        
769
770
771
772
        if caseInsensitive :
            self.attributeCache.get_global_attributes()
        else :
            toReturn = self._h5.attrs
773
774
        
        return toReturn
(no author)'s avatar
(no author) committed
775
    
776
    def get_global_attribute(self, attributeName, caseInsensitive=True) :
(no author)'s avatar
(no author) committed
777
778
779
780
781
782
        """
        returns the value of a global attribute if it is available or None
        """
        
        toReturn = None
        
783
784
785
786
787
        if caseInsensitive :
            toReturn = self.attributeCache.get_global_attribute(attributeName)
        else :
            if attributeName in self._h5.attrs :
                toReturn = self._h5.attrs[attributeName]
(no author)'s avatar
(no author) committed
788
789
        
        return toReturn
(no author)'s avatar
(no author) committed
790

(no author)'s avatar
(no author) committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

class aeri(object):
    """wrapper for AERI RNC/SUM/CXS/etc datasets
    """
    _dmv = None
    _vectors = { }
    _scalars = { }
    
    @staticmethod
    def _meta_mapping(fp):
        ids = fp.metaIDs()
        names = [fp.queryMetaDescString(1, id_, fp.SHORTNAME) for id_ in ids]
        assert len(ids) == len(names)
        return (dict((n, i) for n, i in zip(names, ids)))
    
    def _inventory(self):
        fp = self._dmv
        assert(fp is not None)
        # get list of vectors and scalars
        self._vectors = dict( (fp.queryVectorDescString(n,fp.SHORTNAME), n) for n in fp.vectorIDs() )
        self._scalars = self._meta_mapping(fp)

    def __init__(self, filename, allowWrite=False):
        assert(allowWrite==False)
        if dmvlib is None:
            LOG.error('cannot open AERI files without dmv module being available')
            return
        self._dmv = dmvlib.dmv()
        rc = self._dmv.openFile(filename)
        if rc!=0:
            LOG.error("unable to open file, rc=%d" % rc)
            self._dmv = None        
        else:
            self._inventory()
    
    def __call__(self):
        return list(self._vectors.keys()) + list(self._scalars.keys())
        
    def __getitem__(self, name):
        fp = self._dmv
        assert(fp is not None)
        if 'DMV_RECORDS' in os.environ:
            nrecs = int(os.environ['DMV_RECORDS'])
            LOG.warning('overriding dmv record count to %d' % nrecs)
        else:
            nrecs = self._dmv.recordCount()
        recrange = range(1, nrecs+1)
        if name in self._vectors:
            vid = self._vectors[name]
            vdata = [ fp.vectorDepValues(rec, vid) for rec in recrange ]
            return np.array(vdata)
        elif name in self._scalars:
            vdata = fp.metaValueMatrix(recrange, [self._scalars[name]])
            return np.array(vdata)
        else:
            raise LookupError('cannot find variable %s' % name)
       
    def get_variable_object(self,name):
        return None
    
    def missing_value(self, name):
        return float('nan')
    
    def create_new_variable(self, variablename, missingvalue=None, data=None, variabletocopyattributesfrom=None):
        """
        create a new variable with the given name
        optionally set the missing value (fill value) and data to those given
        
        the created variable will be returned, or None if a variable could not
        be created
861
862
863
864
        """
        
        raise IOUnimplimentedError('Unable to create variable in aeri file, this functionality is not yet available.')
        
(no author)'s avatar
(no author) committed
865
866
867
868
869
870
871
872
        return None
    
    def add_attribute_data_to_variable(self, variableName, newAttributeName, newAttributeValue) :
        """
        if the attribute exists for the given variable, set it to the new value
        if the attribute does not exist for the given variable, create it and set it to the new value
        """
        
873
874
        raise IOUnimplimentedError('Unable to add attribute to aeri file, this functionality is not yet available.')
        
(no author)'s avatar
(no author) committed
875
        return
876
    
877
    def get_variable_attributes (self, variableName, caseInsensitive=True) :
878
879
880
881
882
883
884
885
886
887
        """
        returns all the attributes associated with a variable name
        """
        toReturn = { }
        
        # TODO
        LOG.warn('Glance does not yet support attribute retrieval in AERI files. None will be used.')
        
        return toReturn
    
888
    def get_attribute(self, variableName, attributeName, caseInsensitive=True) :
889
890
891
892
893
894
895
896
897
        """
        returns the value of the attribute if it is available for this variable, or None
        """
        toReturn = None
        
        # TODO
        LOG.warn('Glance does not yet support attribute retrieval in AERI files. None will be used.')
        
        return toReturn
(no author)'s avatar
(no author) committed
898
    
899
900
901
902
903
904
905
906
907
908
909
910
911
    def get_global_attributes(self, caseInsensitive=True) :
        """
        get a list of all the global attributes for this file or None
        """
        
        toReturn = None
        
        # TODO
        LOG.warn('Glance does not yet support attribute retrieval in AERI files. None will be used.')
        
        return toReturn
    
    def get_global_attribute(self, attributeName, caseInsensitive=True) :
(no author)'s avatar
(no author) committed
912
913
914
915
916
917
918
919
920
921
        """
        returns the value of a global attribute if it is available or None
        """
        
        toReturn = None
        
        # TODO
        LOG.warn('Glance does not yet support attribute retrieval in AERI files. None will be used.')
        
        return toReturn
(no author)'s avatar
(no author) committed
922
923
924
925

# handle the variety of file suffixes by building aliases to aeri class
cxs = rnc = cxv = csv = spc = sum = uvs = aeri

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
class tiff (object):
    """wrapper for to open GeoTIFF data sets for comparison
    __call__ yields sequence of variable names
    __getitem__ returns individual variables ready for slicing to numpy arrays
    """
    
    _tiff = None
    
    # if we are using meaningful names, we will translate between
    # the band index numbers and these names (otherwise bands use generic names)
    EXPECTED_BAND_NAME_KEY = {
                                1: ["grayscale value"],
                                3: ["red", "green", "blue"],
                                4: ["red", "green", "blue", "alpha"],
                             }
    SPECIAL_NAMES_TO_IDX   =  {
                                "grayscale value":  1,
                                "red":              1,
                                "green":            2,
                                "blue":             3,
                                "alpha":            4,
                              }
    
    def _get_generic_band_name (self, number) :
        """get a generic band name for this number"""
        
        return ("band at index " + str(number))
    
    def _get_band_index_from_name (self, name) :
        """get an index for the band from a name
        
        name may be either a meaningful name from the list that shows
        up in SPECIAL_NAMES_TO_IDX's keys or a generic name that was
        generated by _get_generic_band_name
        """
        
        to_return = None
        
        if name in self.SPECIAL_NAMES_TO_IDX.keys() :
            to_return = self.SPECIAL_NAMES_TO_IDX[name]
        else :
            to_return = int(name.split(' ')[-1])
        
        return to_return
    
    def __init__(self, filename, allowWrite=False, useMeaningfulNames=True):
        
        if gdal is None:
            LOG.error('gdal is not installed and is needed in order to read GeoTIFF files')
            assert(gdal is not None)
        
        if allowWrite:
            LOG.warn("Write access requested, but is not currently supported for GeoTIFF files. File will be opened read-only.")
        
        self._tiff     = gdal.Open(filename)
        self.niceNames = useMeaningfulNames

    def __call__(self):
        "yield names of variables to be compared"
        
        # GeoTIFF files don't actually have named variables, so get something appropriate based on the numbering of bands
        num_bands = self._tiff.RasterCount
        
        to_return = [ ]
        if self.niceNames and (num_bands in self.EXPECTED_BAND_NAME_KEY.keys()) :
            to_return = self.EXPECTED_BAND_NAME_KEY[num_bands][:]
        else :
            for bandNumber in range(1, num_bands + 1) :
                to_return.append(self._get_generic_band_name(bandNumber))
        
        return to_return
    
    # this returns a numpy array with a copy of the full, scaled
    # data for this variable, if the data type must be changed to allow
    # for scaling it will be (so the return type may not reflect the
For faster browsing, not all history is shown. View entire blame