#!/usr/bin/env python3 import numpy as np from datetime import datetime import os from functools import partial from lmatools.grid.make_grids import write_cf_netcdf_latlon, write_cf_netcdf_noproj, write_cf_netcdf_fixedgrid from lmatools.grid.make_grids import dlonlat_at_grid_center, grid_h5flashfiles from glmtools.grid.make_grids import grid_GLM_flashes from glmtools.io.glm import parse_glm_filename from lmatools.grid.fixed import get_GOESR_grid, get_GOESR_coordsys import logging log = logging.getLogger(__name__) parse_desc = """Grid GLM flash data. The start and end times can be specified independently, or if not provided they will be inferred from the filenames. Grid spacing is regular in latitude and longitude with the grid box being sized to match the requested dx, dy at the center of the grid. Therefore, this script can be used to process multiple days and they will be written to a standardized directory structure. """ def create_parser(): import argparse parser = argparse.ArgumentParser(description=parse_desc) parser.add_argument('-v', '--verbose', dest='verbosity', action="count", default=0, help='each occurrence increases verbosity 1 level through ERROR-WARNING-INFO-DEBUG (default INFO)') parser.add_argument('-l', '--log', dest="log_fn", default=None, help="specify the log filename") parser.add_argument('-o', '--output-dir', metavar='directory', default='.') parser.add_argument('--ctr-lat', metavar='latitude', type=float, help='center latitude') parser.add_argument('--ctr-lon', metavar='longitude', type=float, help='center longitude') parser.add_argument('--start', metavar='yyyy-mm-ddThh:mm:ss', help='UTC start time, e.g., 2017-07-04T08:00:00') parser.add_argument('--end', metavar='yyyy-mm-ddThh:mm:ss', help='UTC end time, e.g., 2017-07-04T09:00:00') parser.add_argument('--dx', metavar='km', default=10.0, type=float, help='approximate east-west grid spacing') parser.add_argument('--dy', metavar='km', default=10.0, type=float, help='approximate north-south grid spacing') parser.add_argument('--dt', metavar='seconds', default=60.0, type=float, help='frame duration') parser.add_argument('--width', metavar='distance in km', default=400.0, type=float, help='total width of the grid') parser.add_argument('--height', metavar='distance in km', default=400.0, type=float, help='total height of the grid') parser.add_argument('--nevents', metavar='minimum events per flash', type=int, dest='min_events', default=1, help='minimum number of events per flash') parser.add_argument('--ngroups', metavar='minimum groups per flash', type=int, dest='min_groups', default=1, help='minimum number of groups per flash') parser.add_argument('--subdivide-grid', metavar='sqrt(number of subgrids)', type=int, default=1, help="subdivide the grid this many times along " "each dimension") parser.add_argument('--goes-position', help="One of [east|west|test]. " "Requires '--goes-sector'.") parser.add_argument('--goes-sector', help="One of [full|conus|meso]. " "Requires goes_position. If sector is " "meso, ctr_lon and ctr_lat are interpreted as " "the ctr_x and ctr_y of the fixed grid") # parser.add_argument('--split-events', # action='store_true', # help='Split GLM event polygons when gridding') parser.add_argument('--ellipse', dest='ellipse_rev', default=-1, type=int, help='Lightning ellipse revision. -1 (default)=infer' ' from date in each GLM file, 0=value at launch,' ' 1=late 2018 revision') parser.add_argument('--float-output', dest='output_scale_and_offset', action='store_false', help='write all output variables as floating point') parser.add_argument(dest='filenames', metavar='filename', nargs='+') return parser def nearest_resolution(args): """ Uses args.dx to find the closest resolution specified by the GOES-R PUG. Returns something like "10.0km" that can be used as the resolution argument to get_GOESR_grid. """ goes_resln_options = np.asarray([0.5, 1.0, 2.0, 4.0, 8.0, 10.0]) resln_idx = np.argmin(np.abs(goes_resln_options - args.dx)) closest_resln = goes_resln_options[resln_idx] resln = '{0:4.1f}km'.format(closest_resln).replace(' ', '') return resln def get_start_end(filenames, start_time=None, end_time=None): """Compute start and end time of data based on filenames.""" base_filenames = [os.path.basename(p) for p in filenames] try: filename_infos = [parse_glm_filename(f) for f in base_filenames] # opsenv, algorithm, platform, start, end, created = parse_glm_filename(f) filename_starts = [info[3] for info in filename_infos] filename_ends = [info[4] for info in filename_infos] except ValueError: filename_starts = None filename_ends = None if args.start is not None: start_time = datetime.strptime(args.start, '%Y-%m-%dT%H:%M:%S') elif filename_starts is not None: start_time = min(filename_starts) if args.end is not None: end_time = datetime.strptime(args.end, '%Y-%m-%dT%H:%M:%S') elif filename_ends is not None: end_time = max(filename_ends) if start_time is None or end_time is None: raise ValueError("Could not determine start/end time") return start_time, end_time def grid_setup(args): # When passed None for the minimum event or group counts, the gridder will skip # the check, saving a bit of time. min_events = int(args.min_events) if min_events <= 1: min_events = None min_groups = int(args.min_groups) if min_groups <= 1: min_groups = None try: start_time, end_time = get_start_end(args.filenames, args.start, args.end) except ValueError: log.error("Non-standard filenames provided, use --start and --end to specify data times.") raise date = datetime(start_time.year, start_time.month, start_time.day) os.makedirs(args.output_dir, exist_ok=True) proj_name = 'geos' if args.goes_position is not None and args.goes_sector is not None: resln = nearest_resolution(args) view = get_GOESR_grid(position=args.goes_position, view=args.goes_sector, resolution=resln) nadir_lon = view['nadir_lon'] dx = dy = view['resolution'] nx, ny = view['pixelsEW'], view['pixelsNS'] geofixcs, grs80lla = get_GOESR_coordsys(sat_lon_nadir=nadir_lon) if 'centerEW' in view: x_ctr, y_ctr = view['centerEW'], view['centerNS'] elif args.goes_sector == 'meso': # use ctr_lon, ctr_lat to get the center of the mesoscale FOV x_ctr, y_ctr, z_ctr = geofixcs.fromECEF( *grs80lla.toECEF(args.ctr_lon, args.ctr_lat, 0.0)) elif args.goes_position is not None and args.goes_sector is None: # Requires goes_position, a center, and a width. Fully flexible # in resolution, i.e., doesn't slave it to one of the GOES-R specs view = get_GOESR_grid(position=args.goes_position, view='full', resolution='1.0km') nadir_lon = view['nadir_lon'] dx1km = dy1km = view['resolution'] geofixcs, grs80lla = get_GOESR_coordsys(sat_lon_nadir=nadir_lon) x_ctr, y_ctr, z_ctr = geofixcs.fromECEF( *grs80lla.toECEF(args.ctr_lon, args.ctr_lat, 0.0)) # Convert the specified resolution in km given by args.dx to # a delta in fixed grid coordinates using the 1 km delta from the # GOES-R PUG. dx, dy = args.dx * dx1km, args.dy * dy1km nx, ny = int(args.width / args.dx), int(args.height / args.dy) else: raise ValueError("Gridding on the fixed grid requires " "goes_position and dx. For goes_sector='meso', also specify " "ctr_lon and ctr_lat. Without goes_sector, also include width " "and height.") # Need to use +1 here to convert to xedge, yedge expected by gridder # instead of the pixel centroids that will result in the final image nx += 1 ny += 1 x_bnd = (np.arange(nx, dtype='float') - (nx) / 2.0) * dx + x_ctr + 0.5 * dx y_bnd = (np.arange(ny, dtype='float') - (ny) / 2.0) * dy + y_ctr + 0.5 * dy log.debug(("initial x,y_ctr", x_ctr, y_ctr)) log.debug(("initial x,y_bnd", x_bnd.shape, y_bnd.shape)) x_bnd = np.asarray([x_bnd.min(), x_bnd.max()]) y_bnd = np.asarray([y_bnd.min(), y_bnd.max()]) geofixcs, grs80lla = get_GOESR_coordsys(sat_lon_nadir=nadir_lon) ctr_lon, ctr_lat, ctr_alt = grs80lla.fromECEF( *geofixcs.toECEF(x_ctr, y_ctr, 0.0)) fixed_grid = geofixcs log.debug((x_bnd, y_bnd, dx, dy, nx, ny)) output_writer = partial(write_cf_netcdf_fixedgrid, nadir_lon=nadir_lon) gridder = grid_GLM_flashes output_filename_prefix = 'GLM' grid_kwargs = dict(proj_name=proj_name, base_date=date, do_3d=False, dx=dx, dy=dy, frame_interval=float(args.dt), x_bnd=x_bnd, y_bnd=y_bnd, ctr_lat=ctr_lat, ctr_lon=ctr_lon, outpath=args.output_dir, min_points_per_flash=min_events, output_writer=output_writer, subdivide=args.subdivide_grid, output_filename_prefix=output_filename_prefix, output_kwargs={'scale_and_offset': args.output_scale_and_offset}, spatial_scale_factor=1.0) if args.fixed_grid: grid_kwargs['fixed_grid'] = True grid_kwargs['nadir_lon'] = nadir_lon # if args.split_events: grid_kwargs['clip_events'] = True if min_groups is not None: grid_kwargs['min_groups_per_flash'] = min_groups grid_kwargs['energy_grids'] = ('total_energy',) if (proj_name == 'pixel_grid') or (proj_name == 'geos'): grid_kwargs['pixel_coords'] = fixed_grid grid_kwargs['ellipse_rev'] = args.ellipse_rev return gridder, args.filenames, start_time, end_time, grid_kwargs if __name__ == '__main__': import sys parser = create_parser() args = parser.parse_args() # Configure logging levels = [logging.ERROR, logging.WARN, logging.INFO, logging.DEBUG] logging.basicConfig(level=levels[min(3, args.verbosity)], filename=args.log_fn) if levels[min(3, args.verbosity)] > logging.DEBUG: import warnings warnings.filterwarnings("ignore") log.info("Starting GLM Gridding") log.debug("Starting script with: %s", sys.argv) from multiprocessing import freeze_support freeze_support() gridder, glm_filenames, start_time, end_time, grid_kwargs = grid_setup(args) gridder(glm_filenames, start_time, end_time, **grid_kwargs)