diff --git a/testing/correlation_test.py b/testing/correlation_test.py
index d367c5ef5c553db759e748637d73354ba1273cd3..4e2d7e2f6dc8314334894d9e2a8008bfa89afb72 100644
--- a/testing/correlation_test.py
+++ b/testing/correlation_test.py
@@ -1,12 +1,15 @@
+from sys import argv
+import os
+import time
+
 import pandas as pd
 import numpy as np
 import scipy.signal
+import matplotlib.pyplot as plt
+
 from aeri_tools.io.dmv import housekeeping
 from aeri_tools.io.dmv import radiance
-from sys import argv
-import os
-import time
-import matplotlib.pyplot as plt
+
 
 def main(path):
 
@@ -18,10 +21,10 @@ def main(path):
     data = pd.DataFrame(index=hk.index, columns=('dmv', 'hk'))
     data['dmv'] = dmv.xs(str.encode('H'), level='scene').mean(axis=1)
     data['hk'] = hk['SCEtemp']
-
     #get rid of hk rows where scene isn't H
     data.dropna(inplace=True)
 
+    #account for errors when using the savgol_filter
     try:
         #subtract the rolling average
         for x in data.columns:
@@ -29,9 +32,11 @@ def main(path):
             data[x] = data[x] - tmp
 
         #correlate the data
-        correlation = np.correlate(data['dmv'].values[:], data['hk'].values[:], mode='same')
+        correlation = np.correlate(data['dmv'].values[:],
+                                    data['hk'].values[:], mode='same')
 
-        print('max = ', np.amax(correlation), ' : min = ', np.amin(correlation))
+        print('max = ', np.amax(correlation), ' : min = ',
+                np.amin(correlation))
 
         fig, ax = plt.subplots(1, figsize=(15,10), sharex=True)
 
@@ -43,11 +48,10 @@ def main(path):
 
         plt.plot(data.index, correlation)
 
-        #plt.show()
+        plt.show()
         name = '/Users/adiebold/Documents/corr_pngs/' + path[-12:-6] + '.png'
-        plt.savefig(name)
+        # plt.savefig(name)
         plt.clf()
-
     #probably the scipy.signal.savgol_filter failing
     except:
         print('FAIL')
@@ -55,28 +59,38 @@ def main(path):
 
 if __name__ == '__main__':
     start_time = time.time()
-
-    pathname = argv[1]
+    filepath = argv[1]
 
     skip_num = 0
     curr_num = 0
-    if os.path.isdir(pathname):
-        for filename in os.listdir(pathname):
-            full_path = pathname + '/' + filename
-            if os.path.isdir(full_path):
-                for fname in os.listdir(full_path):
-                    fuller_path = full_path + '/' + fname
-                    if os.path.isfile(fuller_path) and 'B1.CXS' in fname:
-                        print(curr_num, ': ', fuller_path)
-                        if curr_num >= skip_num:
-                            main(fuller_path)
+    print('skip_num = ', skip_num, '\n')
+    if os.path.isdir(filepath):
+        for filename_1 in os.listdir(filepath):
+            filename_1 = filepath + '/' + filename_1
+            filename_1 = filename_1.replace('//', '/')
+            if os.path.isdir(filename_1):
+                for filename_2 in os.listdir(filename_1):
+                    filename_2 = filename_1 + '/' + filename_2
+                    filename_2.replace('//', '/')
+                    if (os.path.isfile(filename_2) and
+                    filename_2.endswith('B1.CXS')):
                         curr_num += 1
-            elif os.path.isfile(full_path) and 'B1.CXS' in filename:
-                if curr_num >= skip_num:
-                    main(full_path)
+                        if curr_num >= skip_num:
+                            print(curr_num, ': ', filename_2)
+                            main(filename_2)
+                        else:
+                            print(curr_num, ': ', filename_2, ' -- SKIPPED')
+            elif os.path.isfile(filename_1) and filename_1.endswith('B1.CXS'):
                 curr_num += 1
-                print(curr_num, ': ', filename)
-    else:
-        main(pathname)
-
-    print('execution time: %d minute(s), %.2f second(s)' % ((time.time()-start_time)//60, (time.time()-start_time)%60))
+                if curr_num >= skip_num:
+                    print(curr_num, ': ', filename_1)
+                    main(filename_1)
+                else:
+                    print(curr_num, ': ', filename_1, ' -- SKIPPED')
+    elif os.path.isfile(filepath):
+        if filepath.endswith('B1.CXS'):
+            print(filepath)
+            main(filepath)
+
+    print('execution time: %d minute(s), %.2f second(s)' %
+        ((time.time()-start_time)//60, (time.time()-start_time)%60))
diff --git a/testing/quick_vis.py b/testing/quick_vis.py
index 6823f8c2f2e8f29f5721687618fff2055b33d7f2..09e285b080aae1a13388903381ef4e248481a1fc 100644
--- a/testing/quick_vis.py
+++ b/testing/quick_vis.py
@@ -9,7 +9,7 @@ import numpy as np
 import pandas as pd
 
 
-def run(filename):
+def main(filename):
 
     subplot_start_time = time.time()
     print('program running...')
@@ -40,8 +40,8 @@ def run(filename):
             low_ind = x
             break
     #calculate average time increment between times for inferring NaT values
-    time_increment = (old_data['time'][high_ind] - old_data['time'][low_ind])
-                        / len(old_data['time'][low_ind:high_ind])
+    time_increment = ((old_data['time'][high_ind] - old_data['time'][low_ind])
+                        / len(old_data['time'][low_ind:high_ind+1]))
 
     data = pd.DataFrame(index=range(len(old_data['time'])),
                         columns=old_data.keys())
@@ -52,11 +52,10 @@ def run(filename):
     for var_name in old_data:
         if var_name not in variable_order and var_name != 'time':
             print('*********\n', var_name, '\n&&&&&&&&&')
-        else:
-            data[var_name] = old_data[var_name]
 
     #infers times for NaT values
     data.loc[data['time'] < 0] = 0
+    data['missing_data_flag_check'].loc[data['time'] == 0] = 1
     for t in range(len(data['time'])):
         if data['time'].iloc[t] == 0 and t != 0:
             data['time'].iloc[t] = data['time'].iloc[t-1] + time_increment
@@ -67,12 +66,12 @@ def run(filename):
                     break
 
     #converts times from nanoseconds to hours
-    data['time'] = data['time']/1000000000/60/60
-                    - data['time'].iloc[0]/1000000000/60/60
+    data['time'] = (data['time']/1000000000/60/60
+                    - data['time'].iloc[0]/1000000000/60/60)
     data.set_index('time', inplace=True)
     #calculate how much of qc_percent is valid
-    qc_percent_num = 100 * (1 - sum(data['qc_percent'])
-                        / len(data['qc_percent']))
+    qc_percent_num = (100 * (1 - sum(data['qc_percent'])
+                        / len(data['qc_percent'])))
     plt.figure(1)
     curr_plot_num = 0
 
@@ -128,15 +127,16 @@ def run(filename):
 
     print('saving...')
     end_of_name = filename.split('/')[-1].split('.')[0] + '.png'
-    plt.savefig('/Users/adiebold/awr_pngs/' + end_of_name)
+    plt.savefig('/Users/adiebold/aeri_quality_control/testing/pngs/awr/' + end_of_name)
+    #comment out plt.show() when doing a directory
+    # plt.show()
+    plt.clf()
 
     print('finished')
     print('subplot execution time: %d minute(s), %.2f second(s)' %
             ((time.time() - subplot_start_time) // 60,
             (time.time() - subplot_start_time) % 60))
     #comment out plt.show() when creating pngs for a directory
-    # plt.show()
-    plt.clf()
 
 if __name__ == '__main__':
     start_time = time.time()
@@ -146,27 +146,36 @@ if __name__ == '__main__':
     print(args.filepath)
 
     #amount of files to skip
-    skip_num = 393
+    skip_num = 0
     curr_num = 0
-    print('skip_num = ', skip_num)
+    print('skip_num = ', skip_num, '\n')
     if os.path.isdir(args.filepath):
         for filename_1 in os.listdir(args.filepath):
             filename_1 = args.filepath + '/' + filename_1
+            filename_1 = filename_1.replace('//', '/')
             if os.path.isdir(filename_1):
                 for filename_2 in os.listdir(filename_1):
                     filename_2 = filename_1 + '/' + filename_2
-                    if filename_2.endswith('QC.nc'):
+                    filename_2 = filename_2.replace('//', '/')
+                    if (os.path.isfile(filename_2)
+                    and filename_2.endswith('QC.nc')):
                         curr_num += 1
                         if curr_num >= skip_num:
-                            print(curr_num, ' -- ', filename_2)
-                            run(filename_2)
+                            print(curr_num, ': ', filename_2)
+                            main(filename_2)
                         else:
-                            print(curr_num, ' -- ', filename_2, ' -- SKIPPED')
-            elif filename_1.endswith('QC.nc')
-                run(filename_1)
+                            print(curr_num, ': ', filename_2, ' -- SKIPPED')
+            elif os.path.isfile(filename_1) and filename_1.endswith('QC.nc'):
+                curr_num += 1
+                if curr_num >= skip_num:
+                    print(curr_num, ': ', filename_1)
+                    main(filename_1)
+                else:
+                    print(curr_num, ': ', filename_1, ' -- SKIPPED')
     elif os.path.isfile(args.filepath):
         if args.filepath.endswith('QC.nc'):
-            run(args.filepath)
+            print(args.filepath)
+            main(args.filepath)
 
-    print('total execution time: %d minute(s), %.2f second(s)' % ((time.time()
-            - start_time) // 60, (time.time() - start_time) % 60))
+    print('total execution time: %d minute(s), %.2f second(s)' %
+            ((time.time()-start_time)//60, (time.time()-start_time)%60))
diff --git a/testing/testing_quick_vis.py b/testing/testing_quick_vis.py
index c110d3f615895e3bb3b40bb6219e115519737c75..6823f8c2f2e8f29f5721687618fff2055b33d7f2 100644
--- a/testing/testing_quick_vis.py
+++ b/testing/testing_quick_vis.py
@@ -1,22 +1,36 @@
+import argparse
+import os
+import time
+
 import netCDF4
 import matplotlib.pyplot as plt
-import matplotlib.patches as patches
-import time
 from scipy import arange
-import os
 import numpy as np
 import pandas as pd
-import argparse
+
 
 def run(filename):
 
     subplot_start_time = time.time()
-
     print('program running...')
     plt.rcParams['figure.figsize'] = [25, 15]
+    #ensures the graphs are created in the correct order
+    variable_order = [
+        'qc_percent', 'hatch_check', 'missing_data_flag_check',
+        'safing_check', 'encoder_check', 'detector_check',
+        'hbb_thermistor_check', 'abb_thermistor_check', 'spike_check',
+        'hbb_temp_outlier_check', 'abb_temp_outlier_check',
+        'bst_temp_outlier_check', 'sce_temp_deviation_check',
+        'hbb_stable_check', 'hbb_covariance_check', 'imaginary_radiance_check',
+        'detector_temp_check',
+        'sky_brightness_temp_spectral_averages_ch1_check',
+        'sky_brightness_temp_spectral_averages_ch2_check',
+        'hbb_std_dev_check', 'hbb_lw_nen_check', 'hbb_sw_nen_check',
+        'lw_responsivity_check', 'sw_responsivity_check',
+        ]
 
     old_data = netCDF4.Dataset(filename).variables
-    #need to account for times when the first or last values are not a time (NaT)
+    #accounts for times when the first or last values are not a time (NaT)
     for x, val in reversed(list(enumerate(old_data['time']))):
         if val > 0:
             high_ind = x
@@ -25,34 +39,23 @@ def run(filename):
         if val > 0:
             low_ind = x
             break
-
     #calculate average time increment between times for inferring NaT values
-    time_increment = (old_data['time'][high_ind] - old_data['time'][low_ind]) / len(old_data['time'][low_ind:high_ind])
+    time_increment = (old_data['time'][high_ind] - old_data['time'][low_ind])
+                        / len(old_data['time'][low_ind:high_ind])
 
-    data = pd.DataFrame(index=range(len(old_data['time'])), columns=old_data.keys())
-
-    #put data into DataFrame
+    data = pd.DataFrame(index=range(len(old_data['time'])),
+                        columns=old_data.keys())
     for key in old_data:
         data[key] = old_data[key]
 
-    #makes sure the graphs are put in the correct order
-    variable_order = ['qc_percent', 'hatch_check', 'missing_data_flag_check', 'safing_check', 'encoder_check', 'detector_check',
-                        'hbb_thermistor_check', 'abb_thermistor_check', 'spike_check', 'hbb_temp_outlier_check', 'abb_temp_outlier_check',
-                        'bst_temp_outlier_check',
-                        'sce_temp_deviation_check', 'hbb_stable_check', 'hbb_covariance_check', 'imaginary_radiance_check',
-                        'detector_temp_check',
-                        'sky_brightness_temp_spectral_averages_ch1_check', 'sky_brightness_temp_spectral_averages_ch2_check',
-                        'hbb_std_dev_check',
-                        'hbb_lw_nen_check', 'hbb_sw_nen_check', 'lw_responsivity_check', 'sw_responsivity_check', ]
-
-    #checks for any variables in the DataFrame not accounted for in variable_order
+    #checks for any variables in the QC file not in variable_order
     for var_name in old_data:
         if var_name not in variable_order and var_name != 'time':
             print('*********\n', var_name, '\n&&&&&&&&&')
         else:
             data[var_name] = old_data[var_name]
 
-    #infers any times for NaT values
+    #infers times for NaT values
     data.loc[data['time'] < 0] = 0
     for t in range(len(data['time'])):
         if data['time'].iloc[t] == 0 and t != 0:
@@ -64,49 +67,17 @@ def run(filename):
                     break
 
     #converts times from nanoseconds to hours
-    data['time'] = data['time']/1000000000/60/60 - data['time'].iloc[0]/1000000000/60/60
-
+    data['time'] = data['time']/1000000000/60/60
+                    - data['time'].iloc[0]/1000000000/60/60
     data.set_index('time', inplace=True)
-
     #calculate how much of qc_percent is valid
-    qc_percent_num = 100 * (1 - sum(data['qc_percent']) / len(data['qc_percent']))
-
-    '''
-    data['time'] = []
-    qc_percent_num = 0.0
-    for var_name in ['time',] + variable_order:
-        print(var_name)
-        greater_than_zero[var_name] = False
-        if var_name == 'time':
-            for x, curr_time in enumerate(old_data['time']):
-                if curr_time < 0:
-                    if x > 0:
-                        curr_time = old_data['time'][x-1] + time_increment
-                    else:
-                        curr_time = old_data['time'][low_ind] - time_increment*(low_ind-x)
-                data['time'].append(curr_time)
-        else:
-            data[var_name] = []
-            for x, value in enumerate(old_data[var_name]):
-                if var_name != 'qc_percent' and var_name != 'hatch_check' and var_name != 'missing_data_flag_check':
-                    if data['missing_data_flag_check'][x] == 0.0:
-                        data[var_name].append(value)
-                    else:
-                        data[var_name].append(0)
-                else:
-                    data[var_name].append(value)
-                    if var_name == 'qc_percent' and value == 0:
-                        qc_percent_num += 1.0
-                if value > 0.0 and not greater_than_zero[var_name]:
-                    greater_than_zero[var_name] = True
-    '''
-
+    qc_percent_num = 100 * (1 - sum(data['qc_percent'])
+                        / len(data['qc_percent']))
     plt.figure(1)
     curr_plot_num = 0
 
     print('creating subplots...')
     for value in variable_order:
-
         #alter name to make it better formatted for the graph
         #use 30 spaces because that's what works best
         if '_check' in value:
@@ -124,58 +95,46 @@ def run(filename):
             var_name = 'qc_percent ({:3.2f}%)'.format(qc_percent_num) + ' '*30
 
         curr_plot_num += 1
-
-        #doublecheck that key is actually a key
+        #doublecheck that value is actually a key
         if value not in data.keys():
-            print('subplot ', curr_plot_num, ' of ', len(variable_order), ' -- ', value, ' --- missing')
+            print('subplot ', curr_plot_num, ' of ', len(variable_order),
+                    ' -- ', value, ' --- missing')
         else:
-            print('subplot ', curr_plot_num, ' of ', len(variable_order), ' -- ', var_name)
+            print('subplot ', curr_plot_num, ' of ', len(variable_order),
+                    ' -- ', var_name)
             ax = plt.subplot(len(variable_order), 1, curr_plot_num)
-
-            #turn background light blue so anywhere not graphed is distinguishable
+            #turn background light blue so anywhere not graphed is
+            #distinguishable from where the value is 0
             ax.set_axis_bgcolor((0.8,1.0,1.0))
             plt.ylabel(var_name, rotation=0)
             # 0-24 for 24 hours, 0-1 either valid or invalid
             plt.axis([0, 24, 0, 1])
-
             # x ticks only on every third to reduce clutter
-            plt.xticks( arange(0,25) )
-            plt.yticks((0,1))
+            plt.xticks(arange(0,25))
             plt.setp(ax.xaxis.get_ticklabels()[1::3], visible=False)
             plt.setp(ax.xaxis.get_ticklabels()[2::3], visible=False)
+            plt.yticks((0,1))
 
-            '''
-            plt.bar(data['time'], old_data[value], width=time_increment
-            plt.plot(data['time'], data[value], color='black')
-            print(value, ' ---- ', data[value])
-            '''
-
-            #fill in the area below values as black and above as white to get rid
-            #of the blue background
+            #fill in the area below values as black and above as white to get
+            #rid of the blue background
             if any(data[value] > 0):
                 plt.fill_between(data.index, data[value], y2=1, color='white')
                 plt.fill_between(data.index, data[value], color='black')
                 plt.tight_layout(h_pad=0.1)
                 plt.subplots_adjust(wspace=1.0)
-
             #if none of the values are above 0 change background to gray
             else:
                 ax.set_axis_bgcolor((0.87,0.87,0.87))
 
     print('saving...')
-    # plt.savefig('/Users/adiebold/rooftop_pngs/' + filename.split('/')[-1].split('.')[0] + '.png')
-    # plt.savefig('/Users/adiebold/qc/' + filename.split('/')[-1].split('.')[0] + '.png')
-    # plt.savefig('/Users/adiebold/archive_test/' + filename.split('/')[-1].split('.')[0] + '.png')
-    # plt.savefig('/Users/adiebold/archive_pngs/' + filename.split('/')[-1].split('.')[0] + '.png')
-    # plt.savefig('/Users/adiebold/ena_data_pics/' + filename.split('/')[-1].split('.')[0] + '.png')
-    # plt.savefig('/Users/adiebold/sgp-c1_pics/' + filename.split('/')[-1].split('.')[0] + '.png')
-    # plt.savefig('/Users/adiebold/sgp_pngs/' + filename.split('/')[-1].split('.')[0] + '.png')
-    # plt.savefig('/Users/adiebold/' + filename.split('/')[-1].split('.')[0] + '.png')
-    plt.savefig('/Users/adiebold/awr_pngs/' + filename.split('/')[-1].split('.')[0] + '.png')
+    end_of_name = filename.split('/')[-1].split('.')[0] + '.png'
+    plt.savefig('/Users/adiebold/awr_pngs/' + end_of_name)
 
     print('finished')
-    print('subplot execution time: %d minute(s), %.2f second(s)' % ((time.time() - subplot_start_time) // 60,
+    print('subplot execution time: %d minute(s), %.2f second(s)' %
+            ((time.time() - subplot_start_time) // 60,
             (time.time() - subplot_start_time) % 60))
+    #comment out plt.show() when creating pngs for a directory
     # plt.show()
     plt.clf()
 
@@ -183,31 +142,31 @@ if __name__ == '__main__':
     start_time = time.time()
     parser = argparse.ArgumentParser()
     parser.add_argument('filepath')
-
     args = parser.parse_args()
-
     print(args.filepath)
 
     #amount of files to skip
     skip_num = 393
     curr_num = 0
+    print('skip_num = ', skip_num)
     if os.path.isdir(args.filepath):
-        for filename in os.listdir(args.filepath):
-            filename = args.filepath + '/' + filename
-            if os.path.isdir(filename):
-                for file_name in os.listdir(filename):
-                    file_name = filename + '/' + file_name
-                    if 'QC.nc' in file_name:
+        for filename_1 in os.listdir(args.filepath):
+            filename_1 = args.filepath + '/' + filename_1
+            if os.path.isdir(filename_1):
+                for filename_2 in os.listdir(filename_1):
+                    filename_2 = filename_1 + '/' + filename_2
+                    if filename_2.endswith('QC.nc'):
                         curr_num += 1
-                        print(curr_num, ' -- ', file_name)
                         if curr_num >= skip_num:
-                            run(file_name)
+                            print(curr_num, ' -- ', filename_2)
+                            run(filename_2)
                         else:
-                            print('SKIP')
-            elif 'QC.nc' in filename:
-                run(filename)
+                            print(curr_num, ' -- ', filename_2, ' -- SKIPPED')
+            elif filename_1.endswith('QC.nc')
+                run(filename_1)
     elif os.path.isfile(args.filepath):
-        if 'QC.nc' in args.filepath:
+        if args.filepath.endswith('QC.nc'):
             run(args.filepath)
 
-    print('total execution time: %d minute(s), %.2f second(s)' % ((time.time() - start_time) // 60, (time.time() - start_time) % 60))
+    print('total execution time: %d minute(s), %.2f second(s)' % ((time.time()
+            - start_time) // 60, (time.time() - start_time) % 60))